
Environ Resource Econ (2012) 51:525–544
DOI 10.1007/s10640-011-9510-x

Optimal Harvest in an Age Structured Model
with Different Fishing Selectivity

Anders Skonhoft · Niels Vestergaard · Martin Quaas

Accepted: 4 September 2011 / Published online: 23 September 2011
© Springer Science+Business Media B.V. 2011

Abstract An age structured model of a fishery is studied where two fishing fleets, or
fishing agents, are targeting two different mature age classes of the fish stock. The agents
are using different fishing gear with different fishing selectivity. The model includes young
and old mature fish that can be harvested, in addition to an age class of immature fish. The
paper describes the optimal harvesting policy under different assumptions on the objectives
of the social planner and on fishing selectivity. First, biomass yield is maximized under per-
fect fishing selectivity, second, equilibrium profit (rent) is maximized under perfect fishing
selectivity, and third, equilibrium profit is maximized under imperfect fishing selectivity.
The paper provides results that differ significantly from the standard lumped parameter (also
surplus production, or biomass) model.
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1 Introduction

The economics of age and stage structured fishery models has played a minor role in the
fishery economics literature. The modest interest is surprising in light of the last decade’s
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concern about overfishing, the increasing tendency to catch small and immature fish, and the
problem of ‘fishing down the food chain’ (Pauly et al. 1998). The discard problem is also a
part of this picture (see, e.g., Anderson 1994; Vestergaard 1996). Another recent cause for
concern is that the ever increasing fishing pressure may cause various systematic changes
in the internal structure and evolution of fish populations (e.g., Anderson et al. 2008) which
indeed may have important economic effects. One obvious reason for this modest interest
in age structured models is the difficulty of analyzing such models. On the one hand, it is
relatively straightforward to formulate a reasonable age-structured model and numerically
simulate the effects of variations in fishing mortality between age classes and over time (e.g.,
Caswell 2001). On the other hand, it is notoriously difficult to understand the various bio-
logical as well as economic forces at work in these models. There are also several technical
difficulties and interpretation problems when one aims to optimize the economic yield, or
biomass, over time in such models. As the present paper will demonstrate, even when an age
structured model is formulated in its most simple form and studied within an equilibrium
fishery context, no clear-cut results can be given even concerning the qualitative structure of
optimal age-structured harvesting, e.g., whether harvesting all or only some of year classes
represent an optimal harvest policy. Rather, it is shown that optimal harvesting essentially
depends on the various biological (recruitment and survival) and economic (cost and price)
parameters of the fishery under consideration. Harvesting selectivity also plays an important
role, and the importance of differences in fishing selectivity is highlighted.

Colin Clark has a chapter on age structured models in the 1976 edition of his milestone
book based on Beverton and Holt (1957). This chapter is more or less left unchanged in
the 1990 edition (Clark 1990, Ch. 9).1 He first studies the condition for fishing a single age
class, or cohort, independently of other cohorts, where the goal is to find the optimal time
to harvest the entire cohort. The solution of this problem is similar to what one finds in a
single-felling forestry model (the Fisher rule). He next formulates a multi cohort model with
fixed (exogenous) recruitment and non-selective fishing mortality. When the management
goal still is present value profit maximizing, he finds the solution to be a sequence of impulse
controls. This second model is closely related to the remarkable Hannesson (1975) paper.

Other early studies include Walters (1969) who constructs a complete age structured model
with endogenous recruitment governed by the Beverton–Holt recruitment function (Beverton
and Holt 1957). However, no fishing costs are included, and the management goal is to maxi-
mize the yield (in tonnes) over a given time period. The model is solved numerically. Another
early contribution is Reed (1980) who analytically studies the maximum sustainable yield
problem. He finds that optimal harvesting includes at most two age classes (see also Getz
1985). Getz and Haight (1989) review various stage structured models and where the max-
imum sustainable yield problem is formulated as well, while Caswell (2001) gives a broad
overview of various types of stage and age structured models (linear as well as nonlinear),
but without any substantial economic content. Tahvonen (2009) has recently derived both
analytical and numerical results on optimal harvesting in a dynamic setting under various
simplifying assumptions. When assuming non selective technology, he finds the optimal
solution to be impulse control. As recruitment here is endogenous, this result generalises the
above mentioned pulse harvesting found in Hannesson (1975); Clark (1990). The intuitive
reason for this result is that the pulse-fishing strategy synchronizes the age structure of the
fish stock and thereby allows the manager to target fish of optimal size (Hannesson 1975;
Tahvonen 2010).

1 In the third (2010) edition, the chapter (Ch. 6 in this edition) has been shortened substantially, in particular
concerning the analysis of the multi cohort model.
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In this paper several aspects of the optimal harvest of a stage structured model of a fishery
are studied. The analysis is restricted to an equilibrium fishery problem such that natural
growth of the various age classes is exactly balanced by fishing mortality. Different agents,
or fishing fleets, targeting the different harvestable age classes of the fish population are
included, and we are studying the situation of perfect as well as imperfect fishing selectivity.
Perfect selectivity is a situation where the agents have full control over their catches of dif-
ferent age classes, while it under imperfect selectivity is some bycatches of non-targeted age
classes.2 The aim of the paper is to analyze optimal solutions, and hence the social planner
situation only is studied. This means that actual management schemes, like regulated open
access, is not considered. The biological model includes young and old mature fish that can
be harvested, together with recruits. Recruitment is determined by the size of the spawning
population. This is the simplest possible formulation of a ‘complete’ age structured model;
that is, there is a harvest trade-off and recruitment is endogenously determined. The problem
is, then, under various management goals of the social planner, to find the optimal harvest
composition of the young and old mature fish stock in biological equilibrium. The paper
describes and analyses the optimal harvesting policy under different assumptions. The paper
provides four results, and where the first result is related to the existing literature (Reed 1980).
Two of the other results are contrasted to the standard lumped parameter (surplus production)
model as we are not aware of any other works within the economics of age structured models
to relate these results to.

The paper is organized as follows. In the next section, the three stage population model is
formulated, with recruitment governed by the Beverton–Holt function. In Sect. 3 we study
the maximum sustainable yield solution of the model. The harvest functions of the two agents
are introduced in Sect. 4. In Sect. 5 the model is solved as a rent maximizing problem with
perfect fishing selectivity while in Sect. 6 we analyze what happens under non selective
harvesting technology. Section 7 gives some numerical illustrations while the last Sect. 8
summarizes our study.

2 Population Model

As already indicated, our study of optimal harvest of different age classes of a fish population
is tackled by using a quite simple model with just three cohorts of the fish population. The
youngest class is immature fish, whereas the two older classes are harvestable and contribute
both to the spawning stock. Recruitment is endogenous and density dependent, and the old
matures are assumed to have higher fertility than the young matures. Natural mortalities, or
equivalently the survival rates, are assumed to be fixed and density independent for all three
age classes.

In time discrete models like this, one has to decide whether fishing takes place before,
or after, natural mortality, and also whether fishing takes place before or after spawning.
Obviously, just as in the Beverton and Holt (1957) model, one may even have that fishing, as
well as natural mortality, take place simultaneously throughout the year (cf. e.g., Hannesson
1975; Getz 1985). However, such formulation creates unnecessary complications within our
stylized framework, and we simply assume that fishing takes place instantaneously, and it
occurs after spawning, but before natural mortality. This last assumption has a small effect
on the principal working of the model (see Sect. 2).

2 FAO defines bycatch as: ‘Bycatch will be used to refer to that part of the catch which is not the primary
target of the fishing effort. It consists of both fish which is retained and marketed (incidental catch) and that
which is discarded or released’ (Clucas 1997).

123



528 A. Skonhoft et al.

The fish population in number of individuals at time t (year) is structured as recruits
X0,t (year < 1), young mature fish X1,t (1 ≤ year < 2) and old mature fish X2,t (2 ≤ year).
The number of recruits is governed by the recruitment function:

X0,t = R(X1,t , X2,t ) (1)

where R(·, ·) may be a one-peaked value function (e.g., of the Ricker type) or it may be
increasing and concave in both mature population sizes (e.g., of the Beverton–Holt type).
The Beverton–Holt type is used here. Therefore, the recruitment function obeys R(0, 0) = 0
and ∂ R/∂ Xi,t = R′

i > 0, together with R′′
i < 0(i = 1, 2). As higher fertility of the old than

the young matures is assumed (similar as in Reed et al. 1980), we also have R′
2 > R′

1.
The number of young mature fish follows next as:

X1,t+1 = s0 X0,t , (2)

where s0 is the fixed natural survival rate. Finally, the number of old mature fish is described
by:

X2,t+1 = s1(1 − f1,t )X1,t + s2(1 − f2,t )X2,t (3)

where f1,t and f2,t are the total fishing mortalities of the young and old mature stage, respec-
tively, while s1 and s2 are the natural survival rates of these mature stages, assumed to be
fixed and density independent. This last equation completes the population model. It has a
recursive structure, and when combining (1) and (2) we find:

X1,t+1 = s0 R(X1,t , X2,t ). (4)

Therefore, Eqs. (3) and (4) represent a reduced form model in two stages, where both equa-
tions are first order difference equations. This form is used when analyzing exploitation.

The population equilibrium for fixed fishing mortalities is defined by Xi,t+1 = Xi,t =
Xi (i = 1, 2) such that:

X2 = s1(1 − f1)X1 + s2(1 − f2)X2 (3′)

and

X1 = s0 R(X1, X2). (4′)

It what follows, Eq. (3′) is notified as the spawning constraint, while Eq. (4′) represents the
recruitment constraint. Notice that an internal equilibrium holds for 0 ≤ f1 < 1 only; that
is, not all the young mature fish can be harvested to sustain the fish stock.

The Beverton–Holt recruitment function is specified as R(X1,t , X2,t ) = a(X1,t +αX2,t )

b+(X1,t +αX2,t )

with a as the scaling parameter (maximum number of recruits per spawning fish), b as the
shape parameter and α > 1 as the parameter indicating higher fertility of the old mature
stage (often related to weight differences; see, e.g., Getz and Haight 1989, p. 154). With this

specification the recruitment constraint (4′) may be written as X2 = X1
α

[
b

s0a−X1
− 1

]
. For

s0a − b < X1 < s0a, it describes the number of old mature fish as a positive, increasing and
convex function of the number of young mature fish. As the spawning constraint is linear,
this guarantees the uniqueness of the equilibrium. Both the recruitment and the spawning

123



Optimal Harvest in an Age Structured Model 529

Fig. 1 Biological equilibrium
with fixed fishing mortalities
(0 ≤ f1 < 1 and 0 ≤ f2 ≤ 1).
Beverton–Holt recruitment
function. Arrows indicate the
dynamics outside equilibrium
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constraint are depicted in Fig. 1. 3 In line with intuition, we find that higher fishing mortalities
shift down the spawning constraint (3′) and hence lead to smaller equilibrium stocks, while
higher survival rates yield more fish. A relatively higher fertility of the old mature stock
through an increased value of α also means more fish because the curvature of recruitment
constraint (4′) increases. A higher α will, however, not change the ratio of old to young
mature fish (the age structure) in equilibrium, as this ratio simply is given by the slope of
the spawning constraint, i.e., by A = s1(1− f1)

1−s2(1− f2)
. Therefore, we find that higher values of the

survival coefficients making the spawning constraint steeper will increase the proportion of
old matures. Higher fishing mortalities of both the old mature and the young mature work in
the opposite direction and increase the equilibrium proportion of young mature. The reason
why higher f1 increases the proportion of the young mature population is therefore, that the
resulting decrease in this age class spills over to an even larger decrease in the old mature
population. In a harvest program with, say f2 = 1 and 0 ≤ f1 < 1, the stock composi-
tion reads A = s1(1 − f1) which simplifies further to s1 if the young mature stock is left
unexploited.

It is possible to explicitly find the stock equilibrium values for the Beverton–Holt recruit-

ment function. The results are X1 = s0a − b
1+αA and X2 = AX1 = A

[
s0a − b

1+αA

]
. From

these expressions we find that b−s0a
s0αa <

s1(1− f1)
1−s2(1− f2)

= A must hold to guarantee an interior

solution.4

3 The Maximum Sustainable Biomass Yield Harvesting

We now proceed to analyze exploitation of the age-structured fish population, and just to
fix ideas and as a background for the economic analysis, we start to look at the ‘classical’

3 Arrows indicating the dynamics outside the equilibrium are also depicted in this figure. Given the current
stock of young mature, the stock of young mature will increase (decrease) if the old mature stock is above
(below) the recruitment constraint. Given the current stock of old mature, the stock of old mature will increase
(decrease) if the young mature stock is to the left (right) of the spawning constraint.
4 If this Beverton–Holt recruitment function is replaced with a peak valued recruitment function (e.g., the
Ricker function), the recruitment constraint will no longer be a strictly increasing convex function as described
in Fig. 1. Two intersections with the spawning constraint would then be possible. However, it is not very plau-
sible that a stock level above the peak value of the recruitment function could be optimal as just fishing
(flow) values, and no positive stock values (like the fish stock intrinsic value), are included in the subsequent
optimization problems.
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problem of finding fishing mortalities maximizing the equilibrium biomass yield (cf. Reed
1980). With w1 and w2 as the fixed weights (kg per fish) of the young and old mature group,
respectively, and where w2 > w1, the equilibrium biomass harvested (in kg) is described
as Y = w1 f1 X1 + w2 f2 X2 as fishing, by assumption, takes place before natural mortality.
The maximum sustainable yield problem is then defined by finding fishing mortalities that
maximize Y subject to the spawning constraint (3′) and the recruitment constraint (4′). The
Lagrangian function of this problem may be written as L = w1 f1 X1 + w2 f2 X2 − λ[X1 −
s0 R(X1, X2)] − μ[X2 − s1(1 − f1)X1 − s2(1 − f2)X2] where λ > 0 and μ > 0 are the
recruitment constraint and the spawning constraint shadow prices, respectively. Following the
Kuhn–Tucker theorem the first order necessary conditions are (assuming Xi > 0, i = 1, 2):

∂L/∂ f1 = (w1 − μs1)X1 ≤ 0; 0 ≤ f1 < 1, (5)

∂L/∂ f2 = (w2 − μs2)X2
>=
< 0; 0 ≤ f2 ≤ 1, (6)

∂L/∂ X1 = w1 f1 + λ
[
s0 R′

1 − 1
] + μs1(1 − f1) = 0 (7)

and

∂L/∂ X2 = w2 f2 + λs0 R′
2 + μ[s2(1 − f2) − 1] = 0. (8)

Condition (5) indicates that the fishing mortality of the young mature stock should take up
the point where the marginal biomass gain is equal to, or below, the marginal biomass loss
of the old mature stage, evaluated at the spawning constraint shadow price. As the fishing
mortality of this stock must be below one to prevent stock depletion (Sect. 2 above) the
marginal biomass gain can not exceed the marginal biomass loss. Condition (6) is analogous
for the old mature stock, except that the marginal biomass gain may exceed the marginal
biomass loss if fishing mortality equals one. Equations (7) and (8) steer the shadow price
values and say basically that the number of fish should be maintained such that the biomass
gains equalize the shadow costs and where the shadow costs of both the mature classes, and
hence also recruitment, should be taken into account.

From the control conditions it is evident that the biological ‘discounted’ biomass content
wi/si (i = 1, 2) steer the fishing mortalities and the fishing composition, and that different
fertilities of the two mature stocks (modelled by α > 1) play no direct role. Because the
ratio wi/si differs among the two age classes, conditions (5) and (6) can not be satisfied
simultaneously as equations. The natural survival rates of the old and young mature fish will
in most instances not differ too much, and if they differ, they will typically be dominated by
the weight difference.5 Therefore, we assume w2/s2 > w1/s1 in the subsequent analysis.6

The maximum sustainable biomass yield fishing mortality is accordingly higher for the old
than the young mature stock, f2 > f1. This is stated as:

5 In stock assessments, the natural survival rate is often assumed to be constant across age-classes. However,
in reality, the rate might vary to a certain degree with age and length (see, e.g., Gislason et al. 2008). In the
ICES report for the North Sea cod http://www.ices.dk/reports/ACOM/2010/WGNSSK/Sec%2014%20Cod.
pdf, we find detailed estimates of weight and survival rates (Tables 14.4 and 14.7b). These data generally
demonstrates that the weight/survival ratio increases quite significantly with age. For example, the 2009 data
indicates that the weight/survival ratio was about 1.3 (kg) for age class one, 1.8 for age class two, 4.4 for age
class three, 5.7 for age class four, 8.4 for age class five and 11.5 for age class six.
6 It can be verified that this assumption has no principal effect on our reasoning as the opposite w1/s1 > w2/s2
simply reverses the different optimal harvest options. However, if the biological discounted biomass content
is similar the structure of the solution will be different. We then find that that the manager simply will be
indifferent between harvesting the two stocks when the sustainable yield is maximized.
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Table 1 Possible optimal solutions

Solution Fishing effort (fishing mortality) Marginal biological
discounted profit condition

Case (i) E2 = 1/q2( f2 = 1) and 0 < E1 < 1/q1(0 < f1 < 1) (p2w2/s2 − c2/q2s2 X2) >

(p1w1/s1 − c1/q1s1 X1)

Case (ii) E2 = 1/q2( f2 = 1) and E1 = 0( f1 = 0) (p2w2/s2 − c2/q2s2 X2) >

(p1w1/s1 − c1/q1s1 X1)

Case (iii) 0 < E2 < 1/q2(0 < f2 < 1) and E1 = 0( f1 = 0) (p2w2/s2 − c2/q2s2 X2) >

(p1w1/s1 − c1/q1s1 X1)

Case (iv) E2 = 0( f2 = 0) and 0 < E1 < 1/q1(0 < f1 < 1) (p1w1/s1 − c1/q1s1 X1) >

(p2w2/s2 − c2/q2s2 X2)

Perfect fishing selectivity

Result 1 The biological discounted biomass content wi/si (i = 1, 2) steers the maximum
sustainable yield fishing mortalities. Fertility plays no direct role. When the biological dis-
counted biomass of the old mature stock is higher than that of the young stock, a higher
fishing mortality of the old than the young mature stock maximizes the sustainable yield.

Our result is in line with Reed (1980) who finds that it is optimal to target one or two
year classes. Further, if two age classes are harvested, the older one should be harvested
completely. However, it should be noted that while we use a straightforward application of
the Lagrangian method, Reed applies a rather complex mathematical method to deduce his
result. Notice also that if the timing assumption of the harvest is changed (Sect. 2) so that
harvesting takes place after natural mortality, the equilibrium biomass harvested is defined
as Y = w1 f1s1 X1 + w2 f2s2 X2. Because the biological constraints are left unchanged, the
first order conditions (5) and (6) will change slightly as only weights, and not biological
discounted weights, steers the optimal harvest policy; that is, conditions (5) and (6) change
to (wi − μ)Xi ≤ 0, i = 1, 2. However, as the survival rates among the mature fish do not
differ too much, the yield maximizing fishing policy will typically be unaffected.

Generally, there are three possibilities to meet the above first order necessary conditions
(5) and (6) with w2/s2 > w1/s1: (i) f2 = 1 and 0 < f1 < 1, (ii) f2 = 1 and f1 = 0, and
(iii) 0 < f2 < 1 and f1 = 0. See also Table 1. The spawning constraint (3′) will for obvious
reasons be steeper in case (iii) than in case (ii) which again will be steeper than in case (i).
Therefore, the size of both mature stocks will be highest with harvest option (iii) and lowest
if case (i) represents the optimal policy. In case (i), the spawning constraint shadow price is
determined by (5) as μ = w1/s1, while Eqs. (7) and (8) together with the population equilib-
rium equations (3′) and (4′) determine the stock sizes, the young adult fishing mortality and
the young adult stock shadow price. Inserting μ = w1/s1 into Eq. (7) yields λ = w1

(1−s0 R′
1)

which, as expected, is positive because (1 − s0 R′
1) > 0 as the recruitment constraint (4′)

intersects with the spawning constraint (3′) from below (cf. Fig. 1). Rewriting Eq. (8) and
inserting μ = w1/s1, the recruitment constraint shadow price is λ = w1/s1−w2

s0 R′
2

. Therefore, if

w1/s1 −w2 < 0, or equivalently s1 is higher than the relative weight between the two stages,
case (i) can not represent the solution to the maximum sustainable yield problem. Arguing
along the same lines, we further find that if s2 is ‘high’ case (ii) becomes less likely as the
valid interval w1/s1 < μ < w2/s2 making the shadow price λ = μ−w2

s0 R′
2

positive through (8)

123



532 A. Skonhoft et al.

becomes smaller. In case (iii), the adult shadow price is determined by (6) as μ = w2/s2.
Equation (8) now reads λ = w2/s2−w2

s0 R′
2

> 0.

What the above discussion basically boils down to is that values of s1 and s2 making the
gap w2/s2 > w1/s1 larger indicate that case (ii) is more likely to take place, while values
that make it smaller means that one of the two other harvest options is more likely to be
optimal. Moreover, for given survival coefficients, we find that case (ii) will more likely be
the optimal option when the gap widens through a higher weight discrepancy. The reason
why case (i) can represent the optimal policy may be explained by the fact that when the
survival rate of young fish is low then it is beneficial to catch them before they die. On the
other hand, for a high survival rate of young fish combined with a relatively low survival rate
of the old, it will be beneficial to fish as much as possible of the old mature stock.

4 Fishing Mortalities

The fish stock is exploited by two fishing fleets (or ‘agents’), utilizing different gears, and
where each of the fleets is targeting a particular age class of the fish. Such harvesting scheme
fits reality in many instances. For example, in the Norwegian cod fishery we find that the
trawlers are targeting the small cod, i.e., the young mature group, and the coastal fleet, using
passive gear, is targeting the large cod, i.e., the old mature group (see, e.g., Armstrong 1999).
To a certain extent, the fleets might be able to influence their catch composition. For example,
the mesh size may be increased, other gears may be adopted to leave the younger and smaller
fish less exploited, the fleets may choose between various fishing grounds, and so forth (e.g.,
Beverton and Holt 1957; Clark 1990).7 However, in most instances the catches are composed
of species from different cohorts and there is hence ‘bycatch’ (cf. also footnote 2). Bycatch
is included in our model. By convention, it is assumed that fleet one (agent one) targets the
young mature fish (stock one) while agent two targets the old mature fish (stock two). Fish-
ing mortality is governed by standard Schaefer harvest functions with fixed ‘catchability’
coefficients.

When E1 is effort use of fleet one, targeting the young mature fish, the catch function for
this fleet writes:

H1 = h1 X1 = q1 E1 X1 (9)

and

B2 = b2 X2 = q̃2 E1 X2, (10)

when again noting that fishing takes place (instantaneously) before natural mortality. H1 and
h1 are the catch (in number of fish) and fishing mortality, respectively, of the young mature
fish while B2 and b2 are the unintended catch (bycatch) and fishing mortality, respectively,
of the old mature fish. q1 and q̃2 denote the (fixed) catchability (productivity) coefficients.
Following this framework, the ratio of fishing mortalities of the target stock and the bycatch
stock is simply determined as h1/b2 = q1/q̃2. In a similar manner with E2 as the fleet two
effort use, the catch functions of this fleet targeting the old mature fish write:

H2 = h2 X2 = q2 E2 X2 (11)

7 More recently, we find that Squires and Kirkley (1991); Turner (1997) and Singh and Weninger (2009)
develop models where the fishermen to some extent can adjust their catch composition in response to changes
in exogenous variables, e.g., the fish price.
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and

B1 = b1 X1 = q̃1 E2 X1. (12)

It is possible to define target catch and bycatch. Fishing mortality of target fish is higher than
the fishing mortality of bycatch fish. Hence, for equally sized stocks, the catch of the targeted
fish stock should be higher than that of the bycatch stock; that is, q1 > q̃2 for fleet 1 and
q2 > q̃1 for fleet 2. Intuitively, one may also think that q̃1 < q1 and q̃2 < q2 should hold.
For the young mature fish this means lower catch per unit effort (CPUE) for the unintended
catch than the target catch, B1/E2 < H1/E1. However, this will not necessarily hold. If,
say, the trawler fleet targets the old mature fish while gill-netters target the young stock, one
may suspect that catch per unit effort is larger for the trawlers than the gill-netters also for
the young mature age group (see also Sect. 6 below).

5 Exploitation I: Perfect Fishing Selectivity

As mentioned, economic exploitation is analyzed within an overall management scheme
where the social planner aims to maximize profit of both fleets in biological equilibrium.
The situation where the bycatch of both stages are negligibly small is first considered; that
is, q̃2 = q̃1 = 0. With p1 and p2 as the fish prices (Euro/kg), assumed to be fixed and
independent of the harvest and where the old mature fish typically is more valuable than the
young fish, p2 ≥ p1 (see, e.g., Armstrong 1999) and c1 and c2 as the constant unit effort cost
of the two fleets, the current joint profit to be maximized is described by

π = (p1w1q1 E1 X1 − c1 E1) + (p2w2q2 E2 X2 − c2 E2).

Total fishing mortality, defined by fi = hi + bi (i = 1, 2), simplifies to fi = hi with perfect
selectivity. The spawning constraint (3′) then writes X2 = s1(1−q1 E1)X1 +s2(1−q2 E2)X2

when inserting for the catch functions (9) and (11). The Lagrangian of this profit maximiz-
ing problem may now be written as L = (p1w1q1 E1 X1 − c1 E1 + p2w2q2 E2 X2 − c2 E2)

− λ[X1 − s0 R(X1, X2)] − μ[X2 − s1(1 − q1 E1)X1 − s2(1 − q2 E2)X2]. Assuming positive
stocks of both age classes (X1 > 0 and X2 > 0), the first order necessary conditions are:8

∂L/∂ E1 = p1w1q1 X1 − c1 − μs1q1 X1 ≤ 0; 0 ≤ E1 < 1/q1, (13)

∂L/∂ E2 = p2w2q2 X2 − c2 − μs2q2 X2
>=
< 0; 0 ≤ E2 ≤ 1/q2, (14)

∂L/∂ X1 = p1w1q1 E1 + λ
[
s0 R′

1 − 1
] + μs1(1 − q1 E1) = 0 (15)

and

∂L/∂ X2 = p2w2q2 E2 + λs0 R′
2 + μ[s2(1 − q2 E2) − 1] = 0. (16)

It is still assumed w2/s2 > w1/s1 and because p2 ≥ p1, we have p2w2/s2 > p1w1/s1.
If the harvest cost discrepancy c1/q1 > c2/q2 holds, we may then intuitively suspect that

the solution of this problem will be very similar to the maximum sustainable yield prob-
lem. In the opposite situation with c2/q2 > c1/q1, we may suspect that an internal solution
0 < Ei < 1/qi (i = 1, 2) can be a possible optimal option. When combining conditions
(13) and (14) a possible internal solution is characterized by (p1w1/s1 − c1/q1s1 X1) =
(p2w2/s2 − c2/q2s2 X2), indicating equal biological discounted marginal profit (Euro per

8 While leaving both stocks unexploited may be beneficial due to, say, high harvesting costs, stock depletion
can never be beneficial under this maximum economic yield scenario with zero discount rate.
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fish) among the two fish fleets (or fish stocks). It can easily be verified that this equation
describes X2 as an increasing concave function of X1, and its intersection with the recruit-
ment constraint (4′) hence yields an unique internal solution. As shown in the Appendix,
however, this is not an internal maximum solution; it is a saddle point solution.

Therefore, possible optimal solutions satisfying conditions (13–16) indicate different bio-
logical discounted marginal profit among the two fish stocks. Altogether, four possibilities
exist. First, we have the same three cases as in the maximum sustainable yield problem; (i)
E2 = 1/q2 and 0 < E1 < 1/q1 (ii) E2 = 1/q2 and E1 = 0 and (iii) 0 < E2 < 1/q2 and
E1 = 0. A fourth possible option is fleet 1 only fishing, but not depleting the fish population.
We thus have case (iv) E2 = 0 and 0 < E1 < 1/q1. In the first three cases, conditions (13)
and (14) hold as (p2w2/s2 − c2/q2s2 X2) > (p1w1/s1 − c1/q1s1 X1) while this inequality is
reversed in case (iv). See Table 1. This is stated as:

Result 2 Any possible optimal sustainable rent harvesting policy under perfect fishing selec-
tivity implies different biological discounted marginal profit (Euro per fish) among the two
harvestable fish stocks. Targeting both stocks, the old mature stock only or the young mature
stock only may all represent possible optimal harvesting schemes.

In case (ii) with E2 = 1/q2 and E1 = 0 the spawning constraint (3′) X2 = AX1 =
s1(1−q1 E1)

1−s2(1−q2 E2)
X1simplifies to X2 = s1 X1. The above harvest condition following (13) and

(14), (p2w2/s2 − c2/q2s2 X2) > (p1w1/s1 − c1/q1s1 X1), may therefore, also be written
as (p2w2/s2 − p1w1/s1) > (1/s1 X1)(c2/q2s2 − c1/q1). With p2w2/s2 > p1w1/s1 this
condition is for sure satisfied with c1/q1 ≥ (c2/q2)/s2. Therefore, not surprisingly, we
find that case (ii) is a possible optimal harvest option when the fleet one harvest cost is
strictly above that of fleet two, c1/q1 > c2/q2. However, this harvest option may also be
possible with c2/q2 > c1/q1 if p2w2/s2 is ‘substantially’ higher than p1w1/s1. In case
(i) with E2 = 1/q2 and 0 < E1 < 1/q1 and where the spawning constraint (3′) reads
X2 = s1(1 − q1 E1)X1, the harvest condition following (13) and (14) can be written as
(p2w2/s2 − p1w1/s1) > (1/s1 X1)(c2/q2s2(1 − q1 E1) − c1/q1). This inequality is for sure
met with c1/q1 ≥ (c2/q2)/s2(1−q1 E1), which is more restrictive than the above related case
(ii) condition. Notice that just as in case (ii), case (i) can also be satisfied if c2/q2 > c1/q1.

Harvesting the old mature stock completely may therefore, be optimal if the harvest cost of
the fleet targeting the young fish is strictly above the cost of the fleet targeting the old mature
fish, as well as the opposite. However, a large marginal profit difference, either through a
substantial marginal fish value discrepancy together with small cost differences, or lower
cost for the fleet targeting the old mature stock than the young mature stock, will work in the
direction that case (ii) becomes more likely as the optimal harvesting scheme. With values
of s1 and s2 making the biological discounted marginal profit gap larger, we will just as in
the maximum sustainable yield fishery (see above) also find that case (ii) is more likely to
be the optimal option.

Arguing along the same line as above, we find that case (iii) with 0 < E2 < 1/q2

and E1 = 0 for sure is satisfied with c1/q1 ≥ (c2/q2)[1 − s2(1 − q2 E2)]/s2. This con-
dition can be met if c1/q1 > c2/q2, but also the opposite as [1 − s2(1 − q2 E2)]/s2 < 1
may hold. Therefore, targeting the old mature stock only, but not harvesting the stock com-
pletely, can be a possible optimal policy even if c2/q2 > c1/q1. When still using conditions
(13) and (14), we find case (iv) with only young mature fishing to be an optimal option if
(p2w2/s2 − p1w1/s1) < (1/s1 X1)[c2(1 − s2)/q2s2(1 − q1 E1) − c1/q1]. Therefore, with
c1/q1 ≥ (c2/q2)(1 − s2)/s2(1 − q1 E1) young mature fishing only can not represent the
optimal fishing policy.

123



Optimal Harvest in an Age Structured Model 535

The above analysis shows that changes in effort costs ci (i = 1, 2) may shift the optimal
harvest policy from targeting one stock to targeting the other stock, or targeting both stocks.
However, in what degree and to what extent is far from clear. Changes in technology qi and
fish prices pi may also shift the optimal harvest policy from one corner solution to another
corner solution. Notice that these discontinuities are not an obvious result as the model is non-
linear due to the nonlinear and concave recruitment function. The solution of this maximum
rent problem coincides with the above section three maximum sustainable yield problem if,
say, case (ii) with E2 = 1/q2 and E1 = 0, or f2 = 1 and f1 = 0, represents the optimal
harvest policy. The optimal stock sizes in both problems are then determined by the spawn-
ing constraint (3′) as X2 = s1 X1 together with the recruitment constraint (4′). In this case
the optimal size of the standing biomass, defined as Q = w1 X1 + w2 X2, is similar under
the two different maximizing objectives; maximizing biomass and maximizing rent (profit).
Such possible outcome contrasts the prediction from the standard lumped parameter (surplus
production) model (e.g., Clark 1990) where the stock (biomass) always will be higher in the
maximum equilibrium rent problem (with zero discount rate, MEY) than in the maximum
sustainable yield problem (MSY).

We may also find that higher fishing costs can be associated with smaller stocks and lower
standing biomass in the rent maximizing problem than in the maximum sustainable yield
problem. This happens under certain conditions if the optimal harvest policy shifts from, say,
case (ii) with E2 = 1/q2 and E1 = 0 to case (iv) with E2 = 0 and 0 < E1 < 1/q1 due to
a sharp fleet two cost increase. While the spawning constraint (3′) is defined as X2 = s1 X1

in case (ii), it becomes X2 = s1(1−q1 E1)
(1−s2)

X1 in case (iv). If s1(1−q1 E1)
(1−s2)

< s1, or equivalently
E1q1 > s2, the spawning constraint hence intersects with the recruitment constraint (4′) for
smaller number of both stocks. Therefore, when a ‘high’c2 changes the rent maximizing har-
vesting policy from case (ii) to case (iv) such that the young mature fishing mortality exceeds
the old mature survival coefficient, higher costs are not working in a stock conserving manner.

Such outcome also contrasts the prediction from the standard lumped parameter model
where higher costs always work in a stock conserving manner. Arguing along the same lines,
we may also find that more valuable fish stocks through higher prices can be associated with
a more stock conserving harvesting policy. Perhaps even more important, improved fishing
efficiency can work in the same stock conserving manner. For example, technological shifts,
or gear changes, that make harvest of the young stock more efficient and hence reduce the
harvest cost c1/q1, case (iv) with E2 = 0 and 0 < E1 < 1/q1 may replace case (ii) with
E2 = 1/q2 and E1 = 0 as the optimal harvest policy. As explained above, such harvest
policy change can be accompanied by a higher standing biomass. This is stated as:

Result 3 Lower effort costs, higher fishing prices and more efficient harvesting technology
may lead to a maximum economic rent policy with a larger standing biomass size in the age
structured model.

Still in contrast with the lumped parameter model, we can also find that changing costs and
prices as well as changing harvesting technology may keep the stock unchanged within the
same harvesting scheme (same corner solution). This is evident in case (ii) with E2 = 1/q2

and E1 = 0. As just seen, the stock sizes in this case are determined by the spawning constraint
(3′) as X2 = s1 X1 together with the recruitment constraint (4′). Therefore, small changes in
q2, as well as q1, will keep the total standing and harvested biomass constant. The stock com-
position will stay unchanged as well. On the other hand, profitability, in this case described
by π = p2w2 X2 − c2/q2, increases with a higher q2 value just as in the lumped parameter
model. However, only the direct effect is present. The indirect and counterbalancing effect
through a lower stock size (first term RHS), as we find in the biomass model, is not present.
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6 Exploitation II: Imperfect Selectivity

We now proceed to analyse the more difficult rent maximum problem with imperfect harvest-
ing selectivity and bycatch, and fishing mortalities described in Sect. 4 such that q̃2 > 0 and
q̃1 > 0. When inserting for all catch functions (9–12), the spawning constraint (3′) now reads
X2 = s1(1 − q1 E1 − q̃1 E2)X1 + s2(1 − q2 E2 − q̃2 E1)X2, or X2 = s1(1−q1 E1−q̃1 E2)

1−s2(1−q2 E2−q̃2 E1)
X1 =

A′ X1. Introduction of bycatch for fixed fishing effort, i.e., higher fishing mortalities, indicate
a less steep spawning constraint and it hence intersects with the recruitment constraint (4′)
further down. Therefore, not surprisingly, with smaller stocks, but possibly surprisingly, a
stock composition with a higher proportion of young mature.

Fishing effort is restricted through the conditions:

0 ≤ (q1 E1 + q̃1 E2) < 1 (17)

and

0 ≤ (q2 E2 + q̃2 E1) ≤ 1. (18)

The allowable fishing effort is thus constrained by the lines O − a − b − c − O in Fig. 2
under the current assumptions of q1 > q̃2 and q2 > q̃1 (Sect. 4 above). Therefore, fishing
effort should be strictly inside segment b − c (but see below) while possibly being located
on the segment a −b. Notice that the above restrictions of the catchability coefficients imply
q1/q̃1 > q̃2/q2, or q1/q̃2 > q̃1/q2.

The profit to be maximized in this fishery is defined by π = (p1w1q1 E1 X1 + p2w2q̃2

E1 X2 −c1 E1)+(p2w2q2 E2 X2 + p1w1q̃1 E2 X1 −c2 E2). The Lagrangian function is written
as L = (p1w1q1 E1 X1 + p2w2q2 E2 X2 + p1w1q̃1 E2 X1 + p2w2q̃2 E1 X2 − c1 E1 − c2 E2) −
λ[X1 − s0 R(X1, X2)] − μ[X2 − s1(1 − q1 E1 − q̃1 E2)X1 − s2(1 − q2 E2 − q̃2 E1)X2] −
η[(q2 E2 + q̃2 E1) − 1] where η ≥ 0 is the old mature fish stock fishing mortality constraint
shadow price (restriction 18). The first order necessary conditions are:

2E

1E

Condition (17) 

Condition (18) 
a 

b 

c

11/ q

21/ q

O

11/ q 21/ q

Fig. 2 Feasible effort with imperfect fishing selectivity
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∂L/∂ E1 = p1w1q1 X1 + p2w2q̃2 X2 − c1 − μ(s1q1 X1 + s2q̃2 X2) − ηq̃2 ≤ 0; E1 ≥ 0,

(19)

∂L/∂ E2 = p2w2q2 X2 + p1w1q̃1 X1 − c2 − μ (s1q̃1 X1 + s2q2 X2) − ηq2 ≤ 0; E2 ≥ 0,

(20)

∂L/∂ X1 = p1w1q1 E1 + p1w1q̃1 E2 + λ
[
s0 R′

1 − 1
] + μs1 (1 − q1 E1 − q̃1 E2) = 0 (21)

and

∂L/∂ X2 = p2w2q2 E2 + p2w2q̃2 E1 + λs0 R′
2 + μ

[
s2 (1 − q2 E2 − q̃2 E1) − 1

] = 0. (22)

In addition, we have η
[
1 − (q2 E2 + q̃2 E1)

] = 0, and where η = 0 holds when the old mature
stock fishing mortality is below one.

As in the perfect selectivity fishery, an interior extremum of the profit function is a saddle
point solution, rather than a maximum (see Appendix). There are, however, now more corner
solution candidates than in the perfect selectivity harvesting situation, as all combinations
of E1 and E2 restricted by the lines O − a − b − c − O in Fig. 2 as described above, but
not any interior points, may represent feasible solutions. These include the Sect. 4 cases
(ii) E2 = 1/q2 and E1 = 0, (iii) 0 < E2 < 1/q2 and E1 = 0, and iv) E2 = 0 and
0 < E1 < 1/q1, but not case (i) E2 = 1/q2 and 0 < E1 < 1/q1. This case is now replaced
by all combinations along the segment a − b. As mentioned, solutions along the segment
b − c including pointb, but also point c, are not feasible.

In the Appendix it is shown that case (ii) with E1 = 0 and E2 = 1/q2, and therefore, η > 0,
represents a possible optimal solution if p2w2q2 X2+p1w1q̃1 X1−c2

(s1q̃1 X1+s2q2 X2)
>

p1w1q1 X1+p2w2q̃2 X2−c1
(s1q1 X1+s2q̃2 X2)

.
Again, this is a marginal discounted profit condition (Euro per fish), but now weighted
by the catch composition and where the survival rates of both stocks are included. With
p2w2/s2 > p1w1/s1 it may be further shown (see Appendix) that this condition for sure
is satisfied if c1

(s1q1 X1+s2q̃2 X2)
≥ c2

(s1q̃1 X1+s2q2 X2)
. When inserting for the spawning constraint

X2 = AX1 and doing a small rearrangement, this inequality may also be written as c1/q1 ≥
(c2/q2)

[
s1+s2(q̃2/q1)A
s1q̃1/q2+s2 A

]
. With A = s1(1 − q̃1/q2)in this case (ii), we hence have c1/q1 ≥

(c2/q2)
[

1+s2(q̃2/q1)(1−q̃1/q2)
q̃1/q2+s2(1−q̃1/q2)

]
. As the RHS bracket term [.] exceeds one, it implies c1/q1 >

c2/q2. Therefore, also with imperfect harvesting selectivity, harvesting the old mature stock
completely may be an optimal option when the targeted harvest cost of fleet one is higher
than that of fleet two. However, just as with perfect selectivity, this case (ii) can also be
met if the fleet two cost is highest. With knife-edge harvesting selectivity (see, e.g., Clark
1990, Ch. 9), no fishing of the young mature fish by fleet two takes place. When q̃1 = 0 the
above case (ii) cost condition thus simplifies to c1/q1 ≥ (c2/q2)

1+s2(q̃2/q2)
s2

. Therefore, with
knife-edge fishing selectivity and no fleet two bycatch income, harvesting the old mature
stock completely may also be an optimal option, provided that c1/q1 > c2/q2 holds.

Case (iii) with 0 < E2 < 1/q2 and E1 = 0 and hence η = 0 is for sure satisfied with the

same type marginal cost condition as above, c1/q1 ≥ (c2/q2)
[

s1+s2(q̃2/q1)A
s1q̃1/q2+s2 A

]
(see Appen-

dix), but with different stock composition because the slope of the spawning constraint now
reads A = s1(1−q̃1 E2)

1−s2(1−q2 E2)
. As the RHS bracket term [.] here may be above as well as below

one, this harvesting scheme can be met by c1/q1 > c2/q2 as well as the opposite. Therefore,
also with imperfect fishing selectivity, fishing the old mature stock only may be an optimal
option even if the fleet two target harvest cost is above that of fleet one. This may even hold
if there is no bycatch.
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The above analysis demonstrates, somewhat surprisingly, that cost conditions indicating
the various profit maximizing harvesting schemes may be quite similar to what was found
under perfect targeting. However, imperfect harvesting technology may have crucial effects
on the size of the standing biomass and stock composition. To see this, let us consider
scheme (ii) with E2 = 1/q2 and E1 = 0 so that harvesting the old mature stock completely
with fleet two only is optimal. In this case, as just seen, the spawning constraint (3′) reads
X2 = s1(1 − q̃1/q2)X1. Compared to the same optimal harvest option without bycatch, i.e.,
when q̃1 = 0, the spawning constraint now intersects with the recruitment constraint (4′)
further down. With bycatch as described here, it is hence beneficial to harvest more and keep
smaller sizes of both subpopulations. The stock composition is also different as the propor-
tion of young mature is higher than in the fishery with perfect targeting. Therefore, we find
here that the reduction in the young mature stock spills over to an even larger reduction in
the old mature population (see also Sect. 2 above),

It is also possible to say something about the profitability effect of bycatch. In harvesting
scheme (ii) the optimal profit is described by π = p2w2 X2 + p1w1(q̃1/q2)X1 −c2/q2. When
inserting for the spawning constraint, the profit can further be written as π = p2w2s1(1 −
q̃1/q2)X1 + p1w1(q̃1/q2)X1 − c2/q2. Differentiating and evaluating at q̃1 = 0 yields
∂π/∂ q̃1 = p2w2s1(∂ X1/∂ q̃1)−(p2w2s1− p1w1)(X1/q2). Because ∂ X1/∂ q̃1 is negative, we
hence find that bycatch for sure has a negative profitability effect if (p2w2 − p1w1/s1) ≥ 0,
i.e., if the old mature stock value (Euro per fish) is not strictly below the biological discounted
young mature stock value. For many fish stocks, this will typically hold.9 We then state:

Result 4 Bycatch may reduce profitability in the age structured model

This result contradicts intuitive reasoning as the presence of bycatch compared to the perfect
selective harvesting situation can be interpreted as if joint production replaces a single good
production with zero additional production costs. We may also think of such transition as
a costless technological improvement, i.e., the fishing fleet is able to harvest more with the
same amount of effort. The possible negative profitability effect must therefore, be explained
by two effects where the above described pattern is the first effect. The second effect is that
bycatch also means that a fixed proportion of unintended catch is landed for every ton of
the targeted fish stock. This reduces the flexibility of targeting age classes separately and
the possibility of controlling the fish stocks in an optimal way. In the above described case
(ii), this second effect dominates. In this case, we also find that catching the young mature
as bycatch leads to reduction in recruitment and hence lower stock biomass also of the old
mature. A corollary of Result 4 is therefore, that better designed fishing gear that reduces
unintended fishing may increase profitability. However, the opposite may certainly also hold
when, say, changes in the bycatch pattern leads to shifts between different optimal harvesting
schemes (numerical section below).

7 Numerical Illustration

The above theoretical reasoning will now be demonstrated numerically. This is merely an
illustration and the chosen parameter values are not related to any particular fisheries. Table 2
shows these parameter values. In the baseline scenarios, the same natural survival coefficient
for the young and old mature is assumed while the weight of the old mature is assumed to
be 50% higher than the young mature. Similar catchability coefficients, unit effort cost of

9 Again, we may refer to the North Sea cod data mentioned in footnote 5.
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Table 2 Biological and
economic baseline parameter
values

Parameter Description Baseline value

s0 Natural survival rate recruits 0.6

s1 Natural survival rate young
mature

0.7

s2 Natural survival rate old mature 0.7

a Scaling parameter recruitment
function

1,500 (number of fish)

b Shape parameter recruitment
function

500 (number of fish)

α Fertility parameter 1.5

w1 Weight young mature 2.0 (kg/fish)

w2 Weight old mature 3.0 (kg/fish)

q1 Catchability coefficient fleet one 0.05 (1/effort)

q2 Catchability coefficient fleet two 0.05 (1/effort)

q̃2 Catchability coefficient fleet one
bycatch

0.01 (1/effort)

q̃1 Catchability coefficient fleet one
bycatch

0.01 (1/effort)

p1 Fish price young mature 1 (Euro/kg)

p2 Fish price old mature 1 (Euro/kg)

c1 Effort cost fleet one 10 (Euro/effort)

c2 Effort cost fleet two 10 (Euro/effort)

the two fleets and equal fishing prices are assumed. The bycatch catchability coefficients are
similar as well, and are assumed to be one fifth of the targeted coefficients for both fleets
(Table 2).

The results from the maximum sustainable yield problem (Sect. 3 above) are reported first.
As shown, the biological discounted biomass content steers the fishing mortality (Result 1).
In the baseline scenario, we find old mature fishing only to be optimal with f2 = 1. When the
old mature survival coefficient s2 increases making the difference (w2/s2 − w1/s1) smaller,
the optimal solution, as expected, eventually shifts from scheme (ii) to (iii). When reducing
the young mature survival coefficient while keeping the old survival coefficient at its baseline
value, we find case (i) with fishing of the young mature age class together with complete
harvesting the old mature stock as the optimal scheme. As shown (Sect. 3), case (i) represents
the optimal solution only if s1 does not exceed a certain limit. When increasing the fertility
parameter of the old mature stock while keeping all the other parameters unchanged, both
stock sizes increase while the fishing mortalities, as expected, are left unchanged.

Figure 3 indicates the sensitivity of the maximum sustainable yield problem under the
baseline parameter scenario solution where case (ii) with f2 = 1 and f1 = 0 represents the
optimal solution. Therefore, with f2 = 1 and increasing values of f1, the sustainable yield
reduces (upper curve). With f2 = 0.5, the sustainable yield stays more or less unchanged for
a young fishing mortality up to 0.6–0.7 before it reduces moderately. With a zero old mature
fishing mortality (lower curve), the maximum sustainable yield increases more or less over
the whole range of a more intensive exploitation of the young mature group.

In the maximum rent problem with perfect fishing selectivity (Sect. 4 above) it is con-
firmed that any possible optimal scheme implies different biological discounted marginal
profit for the two fishing fleets (Result 2). Fishing the old mature stock only is optimal in
the baseline parameter value scenario with c2/q2 = c1/q1. See Table 3, last row. Sensitivity
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Table 3 The maximum rent problem with imperfect selectivity

E1( f1) E2( f2) X1 X2 π Y Q

Baseline parameter values 0 (0) 13 (0.65) 674 542 1,071 1,069 2,974

q̃2 = 0 0 (0) 20 (1.00) 656 459 1,177 1,377 2,689

q̃1 = 0.02 q̃2 = 0.02 0 (0) 10 (0.49) 685 601 1,016 879 3,175

q̃1 = 0 q̃2 = 0 0 (0) 20 (1.00) 656 459 1,177 1,377 2,689

fi Fishing mortality, Ei fishing effort, Xi number of fish (i = 1 young mature fish, i = 2 old mature fish),
Y sustainable yield (kg) and Q standing biomass (kg), π profit (Euro)
Fishing mortalities in brackets. Last row: No bycatch and perfect selectivity

analysis under the baseline parameter values (not reported) indicates very much the same
pattern as in the maximum sustainable yield problem shown in Fig. 3. When shifting the fleet
two harvest cost c2 up while keeping all the other parameters constant at their baseline values,
it becomes relatively more profitable to harvest young mature fish. For a certain threshold
level of c2, case (iii) where the old mature stock is harvested only partially becomes optimal.
See Fig. 4, lower panel. When c2 increases further, the optimum harvest policy switches to
case (iv) with no harvesting of old mature and partial harvesting of young mature fish. While
the standing biomass monotonically increases with higher c2 before this second threshold is
reached, it suddenly falls for harvesting cost larger than this threshold (upper panel). Because
nothing is harvested of old mature fish in case (iv), a further increase in c2 has no effect on the
standing biomass. These shifts illustrate Result 3. Similar outcomes may be obtained when
shifting the fleet one harvest cost as well as prices and catchability coefficients.

In the baseline maximum rent problem with imperfect selectivity, we find zero fleet one
harvesting and fleet two harvesting well below maximum fishing mortality, i.e., case (iii), to
be optimal (row one Table 3). As suggested (Result 4), profit is lower than with perfect fishing
selectivity (last row) even if both stocks and the standing biomass are higher. With knife-edge
selectivity (q̃2 = 0), fleet two fishing only is still optimal, but now the old mature stock is
fished completely. Therefore, this solution gives the same result as with perfect targeting
under the baseline parameter assumption (last row). Finally (row three), it is seen that profit
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Fig. 4 Upper panel: optimal
standing biomass (Q)- Lower
panel: fishing mortalities (solid:
old mature f2, and dashed:
young mature f1). Base line
parameter values and changes
fleet two effort cost c2

may decline even with higher stock sizes when the bycatch coefficients shift up. Here the
optimal fishing effort levels change back to case (iii).

8 Concluding Remarks

In this paper we have considered a simple formulation of a ‘complete’ age structured fishery
model; that is, there is a harvest trade-off included and recruitment is endogenously deter-
mined. Both the maximum sustainable yield problem and the maximum rent problem, the
last with perfect as well as imperfect harvesting selectivity, are studied. The analysis shows
that even in this simple framework and where biological equilibrium only is considered, very
few straightforward results appear. On the one hand, we find that differences in weight and
survival among the harvestable stocks as well as differences in costs and technology among
the fleets targeting the stocks play an important role in explaining the socially (overall) opti-
mal harvest pattern. On the other hand, surprisingly enough, differences in the reproductive
potential, or fertility, among the mature stocks play no direct role.

In the maximum sustainable yield problem it is first shown that the weight- survival ratio,
or the biological discounted biomass content, steers the optimal policy, and that higher fishing
mortality of the old mature fish than the young mature fish will represent the optimal policy
under the assumption that the biological discounted biomass content is higher for the old
stock. When next analyzing the maximum rent problem with perfect harvesting selectivity,
we find that any possible optimal fishing scheme implies different biological discounted rent
among the two harvestable fish stocks. Targeting both stocks, the old mature stock only or
the young mature stock only may all represent possible optimal policies. In this problem, the
condition for harvesting the old mature stock only is found as well, and it is analyzed how
continuous changes in costs and harvesting technology will change the optimal harvesting
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from targeting one age class, the other age class, or both age classes. Results that contrast
well know outcomes from the standard lumped parameter (surplus production) model are also
demonstrated. In the maximum rent problem with imperfect harvesting selectivity, we also
find corner solutions only to be optimal, and it is shown that bycatch may reduce profitability
within our social planner optimizing framework.

One important policy implication of our analysis is that a ‘balanced’ fishing policy that
implies equal fishing mortality among the fishable stocks, will lead to economic losses. Any
Total Allowable Catch (TAC) policy should hence be based on specified fishing mortalities
for the various age classes which generally will be different. With imperfect targeting and
bycatch an optimal TAC policy demands more information than without bycatch. Another
important implication is that a policy enforcing a more selective fishing gear can reduce as
well as increase total profitability of the fishery.
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Appendix

Interior Solution Maximum Rent Problem with Perfect Fishing Selectivity

To prove that an interior solution is a saddle point in the maximum rent problem with perfect
fishing selectivity (Sect. 4), we consider the unconstrained optimization problem where the
derived explicit expressions for Xi (i = 1, 2) (Sect. 2) are inserted into the profit function.
The profit is then described by

π = p1w1q1 E1

(
s0a − b

1 + αA

)
+ p2w2q2 E2 A

[
s0a − b

1 + αA

]
− c1 E1 − c2 E2

with A = s1(1−q1 E1)
1−s2(1−q2 E2)

(see also Sect. 2 main text), and is expressed as a function of A and
E2. Doing some rearrangements we first find

π =
[

p1w1

s1
[s1 − (1 − s2 + s2q2 E2) A] + p2w2

s2
s2q2 E2 A

] [
s0a − b

1 + αA

]

− c1

s1q1
[s1 − (1 − s2 + s2q2 E2) A] − c2 E2.

which further may be written as

π =
[[

p2w2

s2
− p1w1

s1

] [
s0a − b

1 + αA

]
+ c1

s1q1

]
s2q2 E2 A − p1w1

s1
b

s1 − (1 − s2) A

1 + αA

+p1w1s0a − c1

q1
−

[
p1w1

s1
s0a − c1

s1q1

]
(1 − s2) A − c2 E2.

The Hessian matrix is H =
(

πAA πAE2

πAE2 0

)
with

∂2π/∂ A2 = πAAds−2 bα

(1+αA)3

[
p1w1

s1
(1 − s2 (1 − q2 E2) + αs1) − p2w2q2 E2

]
, andπAE2 =[(

p2w2
s2

− p1w1
s1

) [
s0a − b

(1+αA)2

]
+ c1

s1q1

]
s2q2 E2. Because det H < 0, the interior solution

is a saddle point.
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Interior Solution Maximum Rent Problem with Imperfect Fishing Selectivity

To prove that an interior solution in the maximum rent problem with imperfect fishing selec-
tivity (Sect. 6) is a saddle point, we again consider the unconstrained optimization problem
where the derived explicit expressions for Xi (i = 1, 2) (Sect. 2) are inserted into the profit
function. The profit is then described by

π = p1w1(q1 E1 + q̃1 E2)

(
s0a − b

1 + αA

)

+p2w2(q̃2 E1 + q2 E2)A

[
s0a − b

1 + αA

]
− c1 E1 − c2 E2

with A = s1(1−q1 E1−q̃1 E2)
1−s2(1−q̃2 E1−q2 E2)

, such that E1 = s1−(1−s2)A−(s1q̃1+s2q2 A)E2
s1q1+s2q̃2 A . Just as above with

perfect selectivity, it follows that the profit, expressed as a function of A and E2, is linear
in E2. Hence, the determinant of the Hessian matrix is also now negative, so any interior
solution must be a saddle point.

Unit Cost Conditions with Imperfect Fishing Selectivity

The necessary control conditions (19) and (20) are first rewritten as

p1w1q1 X1 + p2w2q̃2 X2 − c1

(s1q1 X1 + s2q̃2 X2)
≤ μ + ηq̃2

(s1q1 X1 + s2q̃2 X2)
(19′)

and

p2w2q2 X2 + p1w1q̃1 X1 − c2

(s1q̃1 X1 + s2q2 X2)
≤ μ + ηq2

(s1q̃1 X1 + s2q2 X2)
, (20′)

respectively. We first look at case (iii) with zero fleet one harvesting, E1 = 0, and old mature
stock fishing mortality below one, 0 < E2 < 1/q2. Constraint (18) is then not binding and
η = 0. With (19′) as an inequality and (20′) as an equation, case (iii) hence implies directly
a higher biological discounted marginal profit of fleet two than fleet one. This may also be
written as

� = p2w2q2 X2 + p1w1q̃1 X1

(s1q̃1 X1 + s2q2 X2)
− p1w1q1 X1 + p2w2q̃2 X2

(s1q1 X1 + s2q̃2 X2)

>
c2

(s1q̃1 X1 + s2q2 X2)
− c1

(s1q1 X1 + s2q̃2 X2)
.

Inserting for the spawning constraint X2 = AX1 (Sect. 2), we next find � =
p2w2q2 A+p1w1q̃1

(s1q̃1+s2q2 A)
− p1w1q1+p2w2q̃2 A

(s1q1+s2q̃2 A)
. Doing some small rearrangements, it can be shown easily

that � > 0 when p2w2/s2 > p1w1/s1, which holds per assumption. Therefore, with � > 0
case (iii) will be an optimal option for sure if c1

(s1q1 X1+s2q̃2 X2)
≥ c2

(s1q̃1 X1+s2q2 X2)
. However,

we may also find that � > 0 holds if the sign of this last inequality is reversed.
We then consider case (ii) E2 = 1/q2 and E1 = 0. The first order conditions (19′) and

(20′) still hold as an inequality and an equation, respectively. Because η > 0, these conditions
indicate higher biological discounted marginal profit for fleet two than fleet one for sure only
with ηq2

(s1q̃1 X1+s2q2 X2)
>

ηq̃2
(s1q1 X1+s2q̃2 X2)

. Inserting for the spawning constraint X2 = AX1,
we find this inequality satisfied as long q1/q̃2 > q̃1/q2 which holds per assumption (see also
Fig. 2 main text). Therefore, also this case (ii) is met if c1

(s1q1 X1+s2q̃2 X2)
≥ c2

(s1q̃1 X1+s2q2 X2)
.
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