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Abstract

A model of interaction between a renewable natural resource with capital limitations, as
exemplified by the optimal investment problem of sheep farming in a Nordic context, is
analysed. Both private and social optimality are considered; with the difference that a
stock value related to the number of grazing animals is attached to the social management
problem due to landscape preservation. The efficiency of alternative policy tools in terms
of obtaining the socially optimal management scheme is discussed. The model builds on
existing studies from the fisheries literature, but the important difference is that while
capital is related to harvesting effort in the fisheries, capital contributes to production cap-
acity to keep the animal stock during the winter in our farm model. The paper provides
several results where both optimal steady states and the optimal approach paths are char-
acterised analytically. The results are further supported by a numerical example.

Keywords: livestock management, irreversible investment, optimal control,
grazing externalities

1. Introduction

Following the pioneering work of Smith (1968), economic models of renewable
resource management have occasionally been extended to include investment in
man-made capital. Even though most, if not all, contributions to this strand of
literature have been related to fishery management problems, spurred by the
seminal contribution of Clark, Clarke and Munro (1979), much of the conclu-
sions obtained here can probably quite easily be extended into the management
of other types of wild natural resources, like terrestrial wildlife. In this paper, we
look at another type of renewable management problem with capital limitations,
namely domestic livestock management. The important difference compared
with fisheries is that while capital in the fishery is related to the capacity of
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harvesting animals, it is related to keeping animals in our livestock farming
problem, which is exemplified by sheep farming in a Nordic context.

The literature on the management of what may be viewed as two capital stocks,
one man-made and the other one biological, is quite small. In most cases,
man-made capital is implicitly assumed malleable enough to be treated as a vari-
able cost. However, the issue in our model is that investments will be sunk to a
large extent; it is hard to lease buildings and related equipment once constructed.
In the fishery model, Clark et al. (1979) emphasise this irreversibility of invest-
ment, meaning that man-made capital cannot be sold once having been bought,
and they show how the possible approach paths towards the optimal steady
state is greatly affected by this property. Their model is linear in both controls, in-
vestment in fishingvessels and harvest of the fish stock, and theapproach pathsare
therefore characterised by a combination of bang–bang and singular controls.
Stochastic elements are included in a paper by Charles and Munro (1985), and
McKelvey (1985) analyses open access dynamics in a fishery with man-made
capital. Boyce (1995) formulates a similar model to that of Clark et al. (1979),
but with non-linear investment costs. He finds, not surprisingly, that the derived
optimal approach path is no longer of the bang–bang type. Sandal et al. (2007)
extend the literature with a model without any non-negative constraint on invest-
ment, but where capital is less valuable when sold than when bought.

In this paper we analyse the optimal investment and harvest, or stocking,
decision problem of a sheep farmer. The farmer, assumed to be well-informed
and rational, aims to maximise present-value profit generated by meat produc-
tion. The market price of meat is taken as given, as we consider a single farm, and
abstract from both exogenous price fluctuations and (other) stochastic factors
such as climatic variations. In addition to the natural capital stock, the
animals, the farmer must also hold a certain amount of man-made capital
which adheres to the familiar mechanisms of investment and depreciation, to
keep the animals indoor during the winter season because of harsh weather con-
ditions. Man-made capital in this farming system is thus mainly buildings and
related equipment which is instrumental in determining farm capacity. Once
invested, this is sunk cost as it is hard to lease. In addition to the costs and benefits
of the individual farmer, we also analyse the situation where a positive value is
attached to the sheep stock. This reflects the amenity value of the cultural land-
scape, which is preserved by grazing. Both in Norway and in the EU, the amenity
value of the landscape is an argument for agricultural support (‘the multifunc-
tional value of agriculture’, see, e.g. Brunstad, Gaasland and Vaardal, 2005),
and we look at how different policy instruments, e.g. stock subsidy and meat
price (slaughter) subsidy, may increase the optimal animal stock.

We are not aware of other theoretical domestic livestock management models
that include man-made capital in addition to animal capital, even though capital
theoretical treatments of livestock are frequently found within the resource eco-
nomics literature, see, e.g. Kennedy (1986). Farm models include Jarvis (1974)
who formulated a timing problem of cattle grazing, and Skonhoft (2008) who
analysed the optimal stocking problem of Nordic sheep farming. Our model
and reasoning builds to some extent on this last paper, but Skonhoft studied a
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situation with no man-made capital limitations and with different year classes of
the animal capital. Different year classes are not included in the present paper.
The research problem here is to find the optimal slaughtering and investment
policy in such a Nordic farming system, and to characterise both the optimal
steady state and approach paths. In the subsequent analysis, natural and
man-made capital will generally be referred to merely as ‘animals’ and
‘capital’, respectively.

The paper is organised as follows. Section 2 describes briefly the Nordic
sheep farming system and the model is formulated. Section 3 analyses the
optimal solution to the individual farmer problem where both the steady
states and the dynamics are considered. In Section 4 the social planner model
is studied and possible policy instruments are analysed. Numerical simulations
are shown in Section 5, while Section 6 concludes the paper. The details of the
dynamic analysis are given in the Appendix where we show that the optimal
dynamic management policy involves a combination of bang–bang and singu-
lar controls.

2. Model

The following analysis is related to economic and ecological conditions found in
Norway, but these also exist in Iceland, Greenland and other places with snow
and harsh winter conditions. There are about 2.1 million sheep in Norway during
the summer grazing season. More than 1 million of these are slaughtered in the
fall. Nearly all male lambs are slaughtered because of the controlled breeding
system, so the winter stock counts somewhat .1 million mainly female
animals (ewes). There are about 14,000 farms, all family farms, and the
average farm size is therefore quite small and accounts only for about 150
summer grazing animals. Sheep farms are located either close to mountain
areas and other sparsely populated areas or along the coast, with a means to
transport the animals to more distant alpine areas with access to areas of
summer grazing land. Such land is typically communally owned and
managed. There is a sharp distinction between the summer grazing season
and the winter indoor season. While food is abundant during the summer
grazing season, housing and indoor feeding is required throughout winter.
The indoor winter season is typically from mid-October to the beginning of
May next year. The adult sheep and the newborn lambs are then released for
outdoor grazing. In September–October, slaughtering takes place. In
Norway, winter feeding basically consists of hay grown on the farms, with
the addition of concentrate pellets provided by the industry. The main product
is meat, which accounts for about 80 per cent of the average farmer’s market
income. The remainder comes from wool, because sheep milk production is vir-
tually non-existent (Nersten et al., 2003). However, income from wool is
neglected in the following analysis. Norwegian sheep farming is also heavily
subsidised, through a complex package of subsidies (Nersten et al., 2003).

We begin with formulating the animal growth equation, given in discrete time
with a time resolution of 1 year, and with a seasonal subdivision between the
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outdoor grazing period (spring, summer and fall) and indoor winter feeding
period. The population is measured in the winter and in the beginning of the
year. In the single period of 1 year, three events occur in the following order:
first lambing, then natural mortality, and finally slaughtering. Therefore,
when neglecting the small natural mortality during the indoor season, all mor-
tality is assumed to take place during the outdoor grazing season related to
various diseases, accidents and predation by large carnivores. As our main
focus is on the interaction between biological and man-made capital, we do
not distinguish between different age classes of animals (see Skonhoft, 2008),
but consider a biomass model where ‘a sheep is a sheep’. The rate of growth
in animal biomass is further assumed constant, as is reasonable with a domestic
animal stock facing controlled breeding and maintenance; that is, there is no
density-dependent growth process. The growth function for animal biomass
may thus be written as follows:

Xt+1 − Xt = rXt − Ht, (1)

such that Xt is the animal stock size in the beginning of year t, Ht ≥ 0 is harvest,
taking place after natural growth and r . 0 is the animal stock net natural
growth rate, assumed to be constant. The size of the winter stock is thus
Xt while the summer stock at the end of the grazing season, but before slaughter-
ing, is (1 + r)Xt.

Man-made capital, also assumed to be homogenous, is used as housing for the
animal stock during the winter indoor season. Each year, a limited positive
amount of investment is allowed, and a constant fraction of the capital stock
depreciates due to wear and tear. The net capital growth is thus given by

Kt+1 − Kt = −gKt + It, (2)

where Kt is the capital stock and It is the accompanying (gross) investment.
g . 0 is the rate of depreciation, assumed to be fixed. This formulation
implies, among others, that in a steady state with a fixed amount of capital
over time, investment will equalise depreciation every year. In real-life situa-
tions, however, we would not expect that a ‘small’ investment would take
place every year, but be relatively ‘large’ in some years and possibly zero in
most years. However, in our model, as in Clark et al. (1979), the fact that invest-
ments possibly would be more lumpy in nature is not taken into account.

The revenue of the farmer is made up of income from meat production. With
p . 0 as the slaughtering price (net of slaughtering costs), the current meat
income for the farmer simply reads pHt and is included as the first term in the
profit equation:

Pt = pHt − V(Xt) − Q(Xt,Kt) − cIt. (3)

p is assumed fixed over time and independent of the harvest decision, as
explained above (Section 1).
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The cost side is made up of operating cost, V(Xt), congestion cost, Q(Xt,Kt)
and investment cost, cIt. The operating cost structure differs sharply between
the outdoor grazing season and the indoor feeding season. As explained,
during the grazing period the sheep graze on communally or private-owned
land in the valleys and the mountains. The animal density is generally low and
possible overgrazing problems may accrue only to some few areas (Austrheim
et al., 2008) and are hence not considered as a problem here. Such land may
be available cost free, or the farmer may pay a fixed annual rent (Austrheim
et al., 2008). For this reason, we do not include an explicit land size constraint,
and the variable cost is simply assumed to be the indoor season-operating cost.
These costs, which include labour cost (typically as an opportunity cost), electri-
city and veterinary costs in addition to fodder, are assumed to be determined
uniquely by the size of the winter animal stock, i.e. Vt = V(Xt), and with
V ′′ ≥ 0, V ′′ ≥ 0, and V(0) = 0. The traditional argument for a strictly convex
cost function is that fodder production is, at least in the short run, constrained
by the size of the available land; that is, as the stock becomes larger it may
become progressively more costly to provide winter fodder grown on pastures
close to the farm. Alternatively, linear-operating cost reflects the situation
where additional fodder, as well as other inputs, can always be bought at a con-
stant market price.

As mentioned, in contrast to what is found in the fisheries literature where
capital is an input into harvesting effort (e.g. Clark et al., 1979), capital in our
farm system is housing and related equipment to keep the animal stock during
the winter. We assume that there is no absolute constraint on the amount of
animals that a given amount of capital can support, so that there is no such
thing as ‘full’ capacity utilisation in our farm model. However, as the indoor
space per animal diminishes, the operating procedure becomes increasingly
cumbersome. We hence include a capacity utilisation cost, or congestion cost,
function Q(Xt,Kt) in our current profit equation (3). It increases with the
number of the winter stock, for any given amount of capital, such that Qx . 0
and Qxx . 0, together with QK , 0, QKK . 0 and QKX , 0. In addition, we
have Q(0,Kt) = 0 when Kt . 0 and limKt�0Q(Xt,Kt) = 1 for Xt . 0. For
all positive stock values, this function is hence convex in Xt and Kt. In
Section 5, we specify this cost function.

The final private cost component is investment in new capital equipment.
We assume, in contrast to Clark et al. (1979), that there is a constraint on the
size of investment in each period, due to, say, limited access to credit, debt aver-
sion, lack of capacity for providing construction services locally and so forth.
We therefore have It ≤ Imax, where Imax is assumed to be constant. A more
sophisticated approach could be to let the maximum investment depend posi-
tively on the already existing capital, stock used as collateral for new loans.
Yet another alternative, following, e.g. Sandal et al. (2007), could be to intro-
duce adjustment costs to limit the amount of investment carried out in each
time period. In our model, as in reality, investment is also irreversible (‘non-
malleability’); the buildings have few, if any, alternative uses once having
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been set up; that is, It ≥ 0. The cost per unit of investment is fixed and given by
c . 0, so that the yearly investment cost reads cIt.

As mentioned, we also look at the situation where, from society’s point of
view, a positive value is attached to the sheep stock of the individual farmer.
This reflects the amenity value of the landscape and that grazing keeps the land-
scape open and avoids shrubs and weeds becoming established. In the model,
this positive externality is introduced by adding the positive stock value

Wt = W̃((1 + r)Xt), and where the summer grazing stock is measured at the
end of the grazing season (seeabove).Moreconveniently we write this as follows:

Wt = W(Xt), (4)

with W ′ . 0, W ′′ ≤ 0 and W(0) = 0, and where the fixed natural growth factor
(1 + r) is embodied in the functional form W. The net social benefit produced
by the considered individual farmer is thus equation (3) plus the positive stock
value (4).

3. Optimal private management

3.1 The problem of the farmer

The farmer aims to maximise present-value profit subject to the dynamic con-
straints imposed by the growth equations for animals (1) and capital (2), and
the constraints on harvest and investment in each period. We suppose an infinite
planning horizon, meaning that we are looking for an optimal steady state. The
planning problem of the farmer is then formulated as follows:

max
∑1

t=0

rt[ pHt − V(Xt) − Q(Xt,Kt) − cIt]
{ }

s.t. Xt+1 − Xt = rXt − Ht

Kt+1 − Kt = −gKt + It

0 ≤ Ht, 0 ≤ It ≤ Imax

Xt,Kt . 0

X0,K0 given,

(5)

and where r = 1/(1 + d) is the discount factor with d ≥ 0 as the constant
discount rate.

The Lagrangean of this problem may be written as follows:

L =
∑1

t=0

rt { pHt − cIt − V(Xt) − Q(Xt,Kt)

− rlt+1[Xt+1 − (1 + r)Xt + Ht]
− rmt+1[Kt+1 − (1 − g)Kt − It] },
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where lt and mt are the shadow prices of the animal and capital stock, respect-
ively. The necessary conditions for a maximum are as follows:

∂L

∂Ht

= p − rlt+1 ≤ 0, 0 ≤ Ht, (6)

∂L

∂It

= −c + rmt+1

.

≤ 0, 0 ≤ It ≤ Imax, (7)

∂L

∂Xt

= −V ′ − QX + rlt+1(1 + r) − lt = 0 (8)

and

∂L

∂Kt

= −QK + rmt+1(1 − g) − mt = 0. (9)

These conditions are also sufficient if the Lagrangean is concave in the states
and controls jointly. Since the Lagrangean is linear in the controls, the sufficiency
conditions boil down to LXX = −(V ′′ + QXX) ≤ 0, LK K = −QK K ≤ 0, which
are always satisfied for the given properties of the cost function

and LXXLQQ − LXY
2 = QK K(V ′′ + QXX) − QKX

2 ≥ 0, which is satisfied at the

optimal steady state (see discussion below). The transversality conditions
for the infinite horizon problem must also hold; i.e. lim

t�1
rtltXt = 0 and

lim
t�1

rtmtKt = 0.

Relationships that define the interior, or ‘singular’ controls for both stocks are
derived from the first-order conditions as follows. If singular harvest holds, we
have from equation (6) p = rlt+1, which means that the shadow price of the
animal stock is constant and equalisesl = p/r. When this expression is inserted
into equation (8), we find the following golden rule condition for the animal
stock:

(r − d) p = V ′(Xt) + QX(Xt,Kt). (10)

Equation (10) therefore describes the relationship between Xt and Kt that is
consistent with singular harvest. This condition may also be written as
p = (1/d)[ pr − V ′(Xt) − QX(Xt,Kt)], indicating that the market revenue
from selling one animal should equalise the discounted net benefit from
keeping it. Because both V ′and QX are positive, we must require that the
animal growth rate exceeds the discount rate, r . d, which is a well-known con-
dition for a positive steady-state animal, or fish, stock (see, e.g. Clark, 1990).
As both r and d are constant, this must always hold, also outside the steady state.

With singular investment, we have from (7) c = rmt+1, which means that the
capital shadow price is constant, m = c/r. Inserted into equation (9), this gives
the optimality condition for capital

(g+ d)c = −QK(Xt,Kt). (11)
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Equation (11) thus defines a relationship between Xt and Kt, that is consistent
with singular investment. It may also be written as c = (1/d)
[−QK(Xt,Kt) − g], indicating that the unit investment cost should equalise
the discounted marginal net benefit from holding capital.

Equation (10) gives XS
t , the animal stock consistent with singular harvest, as

determined by Kt, and describes a curve in the (K, X) space along which singular
harvest holds. Using equation (1) then obtains the singular harvest rule that
moves the system along this path towards the equilibrium, as a function of the

two stocks, HS(Xt,Kt), see also Section 3.3. Starting off this path, harvest is
set either at zero or maximum until the system reaches this singular trajectory.
We thus have the following alternatives for harvest policy:

Ht =
(1 + r)Xt − XS

t when p . rlt+1

HS when p = rlt+1

0 when p , rlt+1

⎧⎨
⎩ .

Note that, since there is no upper bound on harvest except from the size of the
stock itself, whenever p . rlt+1, the herd will be reduced immediately (that

is, within one-time period), to XS, where p = rlt+1, and singular harvest
takes over. This is often called impulse control in the optimal control theory
literature.

Similarly, condition (7) states that investment is set to its upper or lower
boundary in order to move the capital stock onto a singular investment trajec-
tory where the unit investment cost equals the discounted capital stock shadow
price

It =
min{Imax,KS

t − (1 − g)Kt} when c , rmt+1

IS when c = rmt+1

0 when c . rmt+1

⎧⎨
⎩ .

Therefore, investment will be at its maximum, provided that this is less than
the difference between the existing capital stock and the one corresponding to
singular investment, or minimum level whenever the per unit investment cost
is lower or higher than the discounted shadow price of capital. When the
shadow price reaches the point where it equals the present value of the unit
cost of investment, the control will either switch between the two control
boundaries – going from maximum to zero investment, or vice versa – or
stay at singular investment for some amount of time.

It is interesting to compare the optimal control regimes in the present model
with the standard one-state variable framework. In a one-state linear control
problem, the singular control would correspond to a single point, which is the
optimal interior steady state. However, singular policies are defined along
curves in the K, X space in our model. These curves act as possible approach
paths to the optimal steady state, where the interior control corresponding to
the chosen path is singular also outside the steady state. Furthermore, given
the linearity of the model, the singular approach path is optimally reached as
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fast as possible; a generalisation of the most rapid approach path solution
normally found in linear control problems.

3.2 The steady states

In an interior equilibrium where both H∗ = HS(K∗,X∗) and I∗ = IS(K∗,X∗),
where superscript ‘*’ indicates optimal steady-state values, the golden rule
equations (10) and (11) must hold. But in principle, one, or both, controls
may also be set at a boundary at a steady state. From equation (1), however,
as long as the rate of animal growth is positive and constant, the harvest rate
must be positive in the steady state. Since there is no upper constraint on
harvest, the steady-state harvest policy must then be singular. From equation
(2), steady-state investment must also be positive, but may be set to its
maximum level, where the gross investment in each year equals depreciation,
keeping the capital stock at its optimal steady-state level given the investment
constraint. We therefore have two alternatives for the steady state, and this is
stated as follows:

Result 1. There are two steady-state alternatives. The first is interior where
both harvest and investment are singular. In the second steady-state harvest is
singular while investment is at the maximum level.

We first study the interior steady state in some detail and then discuss the situ-
ation where the investment constraint binds. At an interior steady state, the two
schedules defined by equations (10) and (11) must intersect. Except from the
very special case where the two curves are coinciding, there can be at most a
countable number of equilibria. When differentiating (10) and (11), we find
dX/dK = −QXK/(V ′′ + QXX) . 0 and dX/dK = −QKK/QXK . 0, respective-
ly. Therefore, both schedules (10) and (11) slope upwards in the (K, X) space, but
the curvatures cannot be determined generally without imposing restrictions
on third derivatives. This allows for an arbitrary number of intersection
points, with a correspondingly arbitrary number of stable and unstable equilib-
ria. However, we find a locally optimal steady-state combination of animals and
capital, denoted K∗ and X∗, where the singular harvest condition (10) intersects
the singular investment schedule (11) from above, so that−QXK/(V ′′ + QXX) .

−QKK/QXK holds at the intersection point. See Figure 1 where equations (10)
and (11) are based on equations (10′) and (11′) (Section 5). Otherwise, the inter-
section point is an unstable equilibrium. This holds because a local maximum is
found where the Lagrangean is concave around a stationary point, which

requires that the condition (V ′′ + QXX)QKK − QKX
2 = G(X,K) ≥ 0 must be

satisfied. Rearranging this expression gives −QXK/(VXX + QXX) .

−QKK/QXK as claimed. When these equilibria are found, the steady-state
harvest follows from equation (1) as:

H∗ = rX∗ (12)
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and the steady-state investment from equation (2) as:

I∗ = gK∗. (13)

Equations (10) and (11) and the sufficiency condition can be used to derive
some comparative static results about X∗ and K∗. In a next step, the effects on
I∗ and I∗ follow recursively from equations (12) and (13), respectively. We
first look at the effect of a changing meat price, and when differentiating
equations (10) and (11) we find (r − d) dp = (V ′′ + QXX)dX + QK XdK
and 0 = −QK KdK − QK XdX, respectively. Combining these expressions
yields the partial price effects ∂X∗/∂p = QKK(r − d)/G(X,K) . 0 and
∂K∗/∂p = −QKX(r − d)/G(X,K) . 0. This is stated as follows:

Result 2. An increase in the priceof meat will result in a larger stock of animals
and capital in an interior optimal steady state.

This result is the opposite of what is found in the standard fishery model (e.g.
Clark, 1990) where a price increase leads to more aggressive harvest and a lower
optimal steady-state stock. The main reason for the opposite result in our farm
model is that costs here are not associated with harvest, but with stock mainten-
ance. With a higher meat price, the farmer thus finds it beneficial to keep a higher
stock of both capital and animals as the maintenance cost decreases relative to
the meat price. A positive shift in equation (10) occurs, similar to what is
depicted in Figure 1. Differentiating equations (10) and (11) also gives

Fig. 1. Interior steady states. Private optimisation (K∗,X∗) and social planner solution

(K∗∗,X∗∗).
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information about the effects of a change in the discount rate. We find positive
effects for both stocks, and this is stated as follows:

Result 3. An increase in the discount rate leads to reduced stocks of both
animals and capital in the interior optimal steady state.

This result fits conventional economic intuition, but is far from obvious when
more than one capital stock is included. As shown by, e.g. Asheim (2008), para-
doxical effects of discounting, such as a positive relationship between discount-
ing and steady-state consumption, may result from multi-dimensional models.
Also, when there is a trade-off between the two stocks across alternative steady
states, something that is typical for predator–prey models, one of the stocks
must increase with discounting while the other goes down. However, this
does not happen here.

Following the same procedure with respect to the other parameters, all the
time assuming that the sufficiency conditionsare fulfilled, the other comparative
static results can also be computed. All the results are reported in Table 1 where
the investment and harvest effects are includedas well. An increase in the invest-
ments cost or depreciation rate means that it is beneficial for the farmer to reduce
the steady-state animal and capital stocks, whereas an increase in the growth rate
of animals leads to larger optimal stocks of both animals and capital. These
results are more or less as expected, and the effects of the parameters work in
the same direction for both stocks. It can also be confirmed that we find the com-
bined effects ∂X∗/∂r = ∂X∗/dg− ∂X∗/∂d . 0, indicating that the negative
effect on the animal stock of a higher depreciation rate must be smaller than
the negative effect of a higher discount rate. We also find ∂K∗/∂r =
∂K∗/dg− ∂K∗/∂d . 0, indicating that the same holds with respect to the
optimal steady-state capital stock.

The effects on the control variables through equations (12) and (13) are quite
straightforward, except for the animal growth rate and rate of depreciation
which both have direct and indirect effects on the steady-state harvest and in-
vestment, respectively. For a positive shift in the animal growth rate, the two
effects work in the same direction and lead to more harvest in the steady
state, since from equation (12) ∂H∗/∂r = X∗ + r∂X∗/∂r . 0. With the depreci-
ation rate, however, the two effects work in the opposite direction as we find
∂I∗/∂g = K∗ + g∂K∗/∂g from equation (13). The direct effect is to increase
the required amount of investment to maintain a given amount of capital,

Table 1. Comparative static results interior steady state with singular harvest and investment

p c d r g

X∗ + (+) 2 (0) 2 (2) + (+) 2 (2)

K∗ + (0) 2 (0) 2 (0) + (0) 2 (2)

H∗ + (+) 2 (0) 2 (2) + (+) 2 (2)

I∗ + (0) 2 (0) 2 (0) + (0) + (0)

The constrained steady state with I∗ = Imax in brackets.
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whereas the indirect effect is to decrease the optimal steady-state capital stock.
The overall effect is ambiguous with general functional forms.

We then consider the other steady-state possibility where the investment is no
longer singular, and hence the condition

I∗= Imax , IS (14)

replaces equation (13) in the interior steady-state solution. The steady-state
capital stock now follows directly through (13) as K∗ = Imax/g, which inserted
into equation (10) yields the steady-state animal stock. The amount of capital
will now for obvious reasons be below what was found in the interior steady
state. Because schedule (11) yields a positive relationship between the two
stocks, the number of animals will also be below what was found in the interior
steady state. The steady-state harvest again follows from equation (12) as
H∗ = rX∗, and the number of animals slaughtered will consequently also be
below the previous steady state.

The comparative static results are now somewhat different, as indicated with
brackets in Table 1. When the investment constraint binds, the depreciation rate
is the only factor that affects the steady-state capital stock. The signs of the
effects on the animal stock are as before, except for the investment cost
which now has zero effect.

3.3. Optimal approach paths

We have characterised the two alternatives for an optimal steady state, both
the interior solution and the case where the upper investment constraint
binds at the optimum. The next task is to study the optimal approach paths.
In general, approach paths in multi-dimensional models are often complicated
to analyse, as exemplified by the predator–prey model of Mesterton-Gibbons
(1996). For a more recent example, see the infectious wildlife disease model in
Horan and Wolf (2005). We find, however, that in our case it is possible to
derive an intuitive solution which is explained graphically in Figure A1 in
the Appendix.

By differentiating equations (10) and (11), and using the growth equations to
substitute for Kt+1 − Kt and Xt+1 − Xt, we can derive explicit dynamic feed-
back rules for both stocks. As there is no upper constraint on the harvest, so
that Ht = 0 along the singular investment schedule, singular investment is
given by

IS
t = gKt −

QXK

QK K

rXt,

with QXK/QK K , 0. Singular investment therefore depends positively on
depreciation, and also on animal stock growth. A higher stock of animals,
and/or a higher animal growth rate means that investment must increase to let

36 A. Gauteplass and A. Skonhoft

 at N
orges T

eknisk-N
aturvitenskapelige U

niversitet on M
arch 2, 2015

http://erae.oxfordjournals.org/
D

ow
nloaded from

 

http://erae.oxfordjournals.org/


capital growth keep pace with growth in the animal stock. Singular harvest is
given by

HS
t =

rXt −
QXK

V ′′ + QXX

gKt Xt . X∗

rXt −
QXK

V ′′ + QXX

(gKt − Imax) Xt , X∗

⎧⎪⎪⎨
⎪⎪⎩ ,

where QXK/(V ′′ + QKK) , 0, and with a similar interpretation. Note that the
singular harvest rule is different depending on whether investment is set to its
upper or lower boundary.

Three results regarding the optimal dynamic adjustment process are stated
here without proof (but see the Appendix). The first two results are related to
the monotonicity of the approach paths, and can be compared with the results
from the fisheries literature. The first of these results is stated as follows:

Result 4. It is never optimal for capital to overshoot its optimal steady-state
level. However, capital may undershoot the steady state if X0 , X∗.

Corollary: It will never be optimal to have excess capacity in the steady state.
This result differs from what is found by Clark et al. (1979), where it is

optimal to have excess capacity in the steady state if the depreciation rate
is zero. The reason that this does not happen here is that capital plays no role
in the harvesting process. Therefore, it is not profitable, or even possible, to
speed up the approach to the equilibrium by overinvesting, if the initial
animal stock is above the equilibrium level. The next result concerns the devel-
opment of the animal stock and is stated as follows:

Result 5. The animal stock may either undershoot or overshoot the optimum,
depending on the initial situation.

This also contrasts the Clark et al. (1979) model, and subsequent contribu-
tions within the fishery economics literature. The intuition is that a more profit-
able rate of capacity utilisation can be obtained by temporarily reducing the
animal stock below the steady-state level if the capital stock is low, and expand-
ing it beyond the steady-state level if the capital stock is large. Both situations
depend on the fact that the capital stock cannot be adjusted instantaneously in
either direction. A last result from the dynamic analysis is stated as follows:

Result 6. If the upper investment constraint is not binding on the approach
path, the optimal steady state will generally be approached with one control
set at the interior and the other at zero.

In principle, all control combinations are possible approaches to the equilib-
rium, but the case where X0 . X∗ and K0 = K∗, so that the equilibrium
is reached by a one-time slaughtering down of the animal stock only, and the
case where the equilibrium is reached by setting both controls to zero, can
both only be satisfied by a fluke. The general approach is along one of the
singular control schedules, and ruling out the possibility that I = Imax along
the approach path, the non-singular of the controls must be zero.
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4. Optimal management: social planner

Assume now that the animal stock of the individual farmer represents a public
good value as given by equation (4) because of landscape preservation.
In reality, farms are heterogeneous and some typically contribute more to the
preservation than others. In this model, however, we consider a ‘representative’,
or average farmer, where the contribution to landscape preservation depends
only on the number of animals, and not on location, etc. We then simply state
the social benefit as the sum of the private profit of the farmer and the public
good value of the animal stock. Therefore, the social planner maximises the
social surplus

Ut = pHt − V(Xt) − Q(Xt,Kt) − cIt + W(Xt) (15)

discounted over an infinite time horizon as before. Repeating the procedure
followed in Section 3.1, the equivalent of the golden rule equation (10), when
the social planner has the same discount rate as the farmer and in a steady
state where time subscripts can be dropped, now reads

(r − d)p = V ′(X) + QX(X,K) − W ′(X), (16)

while equation (11) still prevails.
It can easily be demonstrated that inclusion of the external animal stock value

shifts equation (16) up compared with equation (10) in the K,X plane. We only
consider the interior stable steady state where the new optimality condition (16)
intersects with equation (11) from above. Not surprisingly, we then find that it
is optimal with more animals and also more capital in the social planner
solution than in the private optimisation problem; that is, X∗∗ . X∗, and
K∗∗ . K∗, where superscript ‘**’ now denotes the interior steady-state social
planner solution. Thus, taking the positive animal stock externality into
account means that the social planner solution not only demands more
animals, but also more capital. See Figure 1 where equation (16) is based on
(16′) in Section 5.

Given that the socially optimal stocks of both animals and capital differ from
what is desired by the privately optimising farmer, there are two separate policy
targets to be achieved by the optimal policy. In general, this would require two
separate policy instruments. However, because only the animal stock has a
social value that directly exceeds that of the private owner, a first best social
optimum may be obtained by just targeting the animal stock by imposing a

subsidy per living animal. With the animal stock subsidy sX . 0 (EUR/

animal), the current profit function of the farmer reads Pt(sX) = pHt+
sXXt − cIt − V(Xt) − Q(Xt,Kt). The equivalent of the optimality equation

(10) then becomes (r − d)p + sX = V ′(X) + QX(X,K). When comparing with
the social planner solution equation (16), we hence find that the optimal

animal stock subsidy in the steady state should equalise sX = W ′(X∗∗). The so-
cially optimal capital stock is then automatically obtained as there are no
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externalities pertaining directly to the capital stock; that is, equation (11) is left
unchanged. The marginal per animal stock subsidy is given as a fixed marginal
stock value here, but to guarantee that the socially optimal solution is followed
also along the transition path a more flexible subsidy scheme would have to be

employed, so that sX is allowed to vary with Xt to always equalise W ′(Xt). In
reality, however, a constant per animal subsidy is probably the most viable
option. The same caveat applies to the other subsidy schemes considered below.

Another policy option may be to introduce a meat price (slaughter) subsidy,
sp . 0 (EUR/animal). The current profit of the farmer in this case reads
Pt(sp) = ( p + sp)Ht − cIt − V(Xt) − Q(Xt,Kt). The equivalent of the optimal-
ity condition (10) now becomes (r − d)( p + sp) = V ′(X) + QX(X,K) while
condition (11) still is left unchanged. Therefore, also in this case it is possible
to obtain two policy goals with only one instrument. In light of condition
(16), we find that the optimal steady-state meat price subsidy should equalise
sp = W ′(X∗∗)/(r − d).

It is also of interest to compare the efficiency of these two policy instruments
(for a related discussion see, e.g. Schulz and Skonhoft, 1996). With the price
subsidy, the total yearly steady-state subsidy is W ′(X∗∗)/(r − d)H∗∗ =
W ′(X∗∗)/(r − d) rX∗∗, while in the stock subsidy case becomes W ′(X∗∗)X∗∗.
With d . 0, and still (r − d) . 0, we thus find that the steady-state price
subsidy exceeds that of the stock subsidy. This is stated as follows:

Result 7. Evaluated at the interior steady state, the stock subsidy is more
efficient than the meat price subsidy as the identical optimal allocation can be
achieved with lower costs for the regulator.

In terms of Figure 1 [based on equations (10′), (11′) and (16′)], the social
optimum lies along the singular investment schedule, and is thus obtained by
shifting the singular harvest schedule only by using the stock subsidy. This
can also be done by way of the meat price subsidy, but in general at a higher
cost for the regulator, as demonstrated above. As shown in Section 5,
however, the cost disadvantage of the price subsidy seems to be quite modest,
as the difference between r and d is substantial in the present farm management
system. Therefore, a meat price subsidy may serve as a reasonably good second
best policy option, in particular if it is more easily accepted and implemented.

A physical investment subsidy sc . 0 (EUR/m2) is also a possible policy
option. The current profit function of the farmer then reads Pt(sc) =
pHt − (c − sc)It − V(Xt) − Q(Xt,Kt). In this situation, the optimality condition
(10) is unchanged while the equivalent of equation (11) now becomes
(g+ d)(c − sc) = −QK(X,K). The working of this investment subsidy,
however, differs from the above considered subsidy schemes as it is now not
possible to reach both policy goals X∗∗ and K∗∗ with just one instrument. The
reason is that while the externality is related to the animal stock, the capital
subsidy is related to the capital stock. Again in terms of Figure 1, we find
that while the animal stock externality shifts up equation (10), introduction of
sc shifts down equation (11). Thus, by introducing sc the socially optimal
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steady-state capital stock can be obtained, or the social optimal steady-state
animal stock can be obtained, but not both goals at the same time.

5. Numerical example

5.1 Functional forms and data

To shed some further light on the above analysis, the model is now illustrated
numerically.1 We do not attempt to accurately describe the economic situation
of a Nordic sheep farmer, but to demonstrate the workings of the model with rea-
sonably realistic parameter values. First, we specify the functional forms. The

congestion cost function is specified as Q(Xt,Kt) = (u/2Kt)X2
t , where u . 0.

It is readily confirmed that this cost function satisfies the properties stated in
Section 2. The operating cost function is next specified strictly convex as

V(Xt) = (h/2)Xt
2, withh . 0, while the stock externality function (4) is speci-

fied linear, Wt = wXt, with w . 0, and where (1 + r) is embedded in w as the
stock externality is measured in the summer grazing season, i.e. w = w̃(1 + r).

With these functional forms, we find the following expression for the singular
harvest and investment schedules in the private optimisation problem:

(r − d)p = h+ u

Kt

( )
Xt (10′)

and

(g+ d)c = u

2

Xt

Kt

( )2

. (11′)

It is easily recognised that both schedules start from the origin and have positive
slopes. While the singular investment schedule (11′) is a straight line, the singu-
lar harvest schedule (10′) yields X as a strictly concave function of K, cf.
Figure 1. They have thus one interior intersection point, provided that the

HS-schedule is steeper than the IS-schedule at the origin which holds for the
given parameter values, and this corresponds to a stable equilibrium (see also
Section 3.2). In the social planner problem, equation (16) reads as follows:

(r − d)p = h+ u

Kt

( )
Xt − w. (16′)

The numerical optimisation is performed using the parameter values found in
Table 2. The discount rate and the indoor-feeding cost parameter are taken
from Skonhoft (2008), while the depreciation rate is what is used by Statistics
Norway for buildings (Statistics Norway, 2011). As for the assumed growth
rate of the animal stock and the slaughter (meat) price, an explanation is in
order. With on average about 1.5 lambs per ewe and modest natural mortality

1 The numerical optimisation was performed using the KNITRO for MATLAB solver form Ziena

Optimization, with MATLAB release 2011b.
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(see Skonhoft, 2008), we suppose that the number of animals that can be slaugh-
tered in the fall each year in a steady state is 1.4 times the winter stock. But as the
winter stock consists of ewes only (Section 2), it can only grow at a maximum
rate of 0.7 when half of the lambs are females. We solve this by setting r = 0.7
and doubling the meat price compared with the actual price (obtained from
Skonhoft, 2008) to get a realistic picture of the annual slaughtering profit. For
our purpose this suffices, but for more realistic results, for instance with
respect to profits outside the steady state, a more elaborate modelling of the con-
trolled breeding system would be required including different age and sex cat-
egories of the animals. The investment and congestion cost parameters are
calibrated for our model such that the number of animals in the steady state
should represent a rather large sized Norwegian farm. In addition, we assume
that the maximum yearly investment is, somewhat arbitrarily, fixed at
Imax = 20 (m2). The value of the stock externality, corrected for the number
of grazing animals, is finally given as w = 20 (EUR/animal).

5.2 Optimal steady states

Table 3 demonstrates the steady-state results in the private optimisation
problem where the number of animals and capital are found as the solution to
equations (10′) and (11′), and harvest and investment from equations (12)
and (13), respectively. The results with the baseline parameter values are
shown in the first column, while the next column indicates the effects of a 50
per cent increase in the meat price, to 360 (EUR/animal), while all the other
parameters are kept at their baseline values. In the last column, the discount
rate is increased by 50 per cent, to d = 0.06 while all the other parameters are
kept at their baseline values. The steady state is interior all the time as the depre-
ciation is below the investment constraint. In the baseline calculation, the
optimal animal stock is 120 (animals), the capital stock becomes 200 (m2)
while the yearly profit is about EUR 9,800. The yearly investment reads
I∗ = gK∗ = 8 , Imax (m2). The change in the discount rate has a modest
impact on the optimal steady-state animal stock level while the effect on the

Table 2. Baseline parameter values

Parameter Description Value

d Discount rate 0.04

r Animal growth rate 0.7

c Unit investment cost (EUR/m2) 100

h Feeding cost (EUR/animal2) 1.1

u Congestion cost (EUR/(animal2/m2)) 45

g Depreciation rate 0.04

p Meat price (EUR/animal) 240

w Stock externality (EUR/animal) 20

Sources and assumptions; see main text.

Optimal exploitation of a renewable resource 41

 at N
orges T

eknisk-N
aturvitenskapelige U

niversitet on M
arch 2, 2015

http://erae.oxfordjournals.org/
D

ow
nloaded from

 

http://erae.oxfordjournals.org/


capital stock is somewhat more substantial (see also the comparative static
results Table 1). The yearly profit is only modestly affected. The 50 per cent
slaughter price change, on the other hand, strongly affects the profit which is
more than doubled compared with the baseline case, both because of the
direct effect of increased per animal income on profit, but also because the
farmer optimally adjusts the production to take further advantage of the price
increase. The direct effect is most important quantitatively, as can be calculated
from Table 3. Note also that capacity utilisation is unaffected when the price
shifts up. The reason is that the investment schedule (11′) is linear and not
affected by the slaughter price. A change in the discount rate, on the other
hand, shifts this schedule as well as schedule (10′) and hence the capacity
utilisation is changed.

Table 4 demonstrates the steady-state social planner solution and the effects
of policy instruments. The first column indicates the planner solution for the
given value of the stocking externality, w ¼ 20 (EUR/animal). The animal
stock increases about 15 per cent compared with the private solution,
X∗∗ = 138, and accordingly also the capital requirement in the same amount
as the capacity utilisation stays unchanged. The effects of the animal stock

subsidy sX = w are indicated in column 2 and demonstrate that the animal
target X∗∗, but also the capital target K∗∗ and therefore also H∗∗ and I∗∗, are

Table 4. Steady state social optimal solution and policy instruments

Social planner,

w = 20 sX = 20 sp = 30.3 sc = 21

Animal stock (# of animals) X∗∗ 138 138 138 122a

Capital (m2) K∗∗ 231 231 231 231

Harvest (# of animals) H∗∗ 97 97 97 85a

Investment (m2) I∗∗ 9 9 9 9

Capacity utilisation

(# of animals/m2)

X∗∗/K∗∗ 0.60 0.60 0.60 0.55a

Yearly profit (EUR) p – 12,689 12,856 10,139

Yearly subsidy (EUR) – 2,756 2,922 194

aNot socially optimal.

Table 3. Steady-state private optimal solution

Baseline p up 50% d up 50%

Animal stock (# of animals) X∗ 120 192 112

Capital (m2) K∗ 200 322 168

Harvest (# of animals) H∗ 84 134 78

Investment (m2) I∗ 8 13 7

Capacity utilisation (# of animals/m2) X∗/K∗ 0.60 0.60 0.67

Yearly profit (EUR) p∗ 9,824 24,241 9,571
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reached with this policy instrument alone. The yearly subsidy with this policy
instrument amounts to EUR 2,756 and the steady-state farm profit becomes
p = EUR 12,689. In column 3, we find the effects of the meat price
subsidy sp = w/(r − d) and where both targets X∗∗ and K∗∗ are reached with
somewhat higher costs. Therefore, the farm profit now becomes higher than
in the previous case and reads EUR 12,856. Finally, column 4 demonstrates
the working of the capital subsidy instrument sc scaled such that the social
optimal capital stock is achieved, but accordingly not the optimal number of
animals. The yearly subsidy becomes substantially lower than in the previous
cases and accordingly also the steady-state farm profit becomes substantially
lower.

5.3 Dynamics

The dynamics of the private optimisation problem are demonstrated in Figures 2
and 3 where the panels to the left are for the state variables while the panels to the
right depict the corresponding harvest and investment paths. Four different
initial situations are considered that correspond roughly to the initial states

Fig. 2. Optimal approach paths baseline parameter values, private optimisation problem.

Initial situation A (K0 = 50, X0 = 110) and C (K0 = 300, X0 = 110).

Optimal exploitation of a renewable resource 43

 at N
orges T

eknisk-N
aturvitenskapelige U

niversitet on M
arch 2, 2015

http://erae.oxfordjournals.org/
D

ow
nloaded from

 

http://erae.oxfordjournals.org/


depicted in Figure A1 in the Appendix, such that (K0,X0) assumes the values
(50, 110) at point A, (210, 20) at point B, (300, 110) at point C and (210, 200)
at point D. The significance of these different initial situations is discussed in
the Appendix.

In Figure 2, the approach paths from the initial points A and C are depicted. In
both these situations the animal stock size is 110 (animals), which is close to the
steady-state optimum (Table 3). The initial capital stock is either far below (A),
or well above (C) its steady-state level. This figure illustrates the possibilities for
the animal stock to over- or undershoot the steady state. If K0 = 50, an immedi-
ate harvesting down of the animal stock is followed by a combination of
maximum investment and singular harvest until the equilibrium is reached
after about 12 years. Since the investment constraint is binding along the ap-
proach path, but not in the steady state, the different trajectories correspond to
the ones depicted in Figure A1b. From K0 = 300, both controls are set to zero
and the animal stock grows above its steady-state level before the singular
harvest schedule is followed, with zero investment.

Figure 3 demonstrates the optimal paths in the private optimisation problem
when the initial states are fixed at points B and D. With K0 = 210 in both cases,

Fig. 3. Optimal approach paths baseline parameter values, private optimisation problem.

Initial situation B (K0 = 210, X0 = 20) and D (K0 = 210, X0 = 200).
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the initial capital stock is hence close to the optimal steady state (again, see
Table 3), while the animal stock level is either far below (initial situation B
with X0 = 20), or far above (D with X0 = 200), the optimal steady state.
In either case, the steady state is reached faster than in the previous cases demon-
strated in Figure 2, as both growth and decline in the animal stock is taking place
faster than that of the capital stock. Initial point B entails zero harvest and invest-
ment, followed by one period of maximum investment (Region II in Figure A1b,
see the Appendix) before the equilibrium is encountered. From initial situation
D, impulse harvest and depreciation of the capital stock leads to the equilibrium
after just two time periods. From point B, the capital stock undershoots the
steady state (but may never overshoot, as discussed in Section 3.3 and the
Appendix).

6. Concluding remarks

In this paper we have, from a theoretical point of view, analysed the dynamic
optimisation problem of a profit maximising farmer who possesses both
animals and man-made capital. The model builds on existing studies from the
fisheries literature, but the important difference is that while capital is related
to harvesting effort in the fisheries, capital contributes to production capacity
to keep the animal stock during the winter in our farm model. The linearity of
the model allows an intuitive graphical description that is rare in multi-
dimensional optimisation problems. Steady states and optimal approach paths
have been characterised analytically, and demonstrated by a numerical
example related to Nordic sheep farming. Both the private and the social
planner solution have been considered and where the amenity value of the cul-
tural landscape (‘multifunctional agricultural production’) is included in the
social planner problem. While exemplified by the Nordic sheep farming
system, our model and reasoning has also direct relevance to sheep farming
other places with a crucial distinction between the outdoor grazing season
and the indoor winter season (e.g. mountain areas in France and Spain).

The steady state in the private solution is shown to be either an interior
optimum with interior controls, or a constrained optimum with investment set
to its maximum value (Result 1). The effects of parameter changes were
studied analytically. We found that with a higher meat price the farmer will
find it beneficial to increase the stock of animals as well as the amount of
capital in the interior steady state (Result 2), while an increase in the discount
rate yields opposite effects (Result 3).

As the objective function is linear in both control variables, the approach path
is a combination of bang–bang and singular controls, and along the approach
path at most one of the controls is singular. The dynamics are different from
what is found in the typical fishery models, as in particular there will be a
gradual building up of capital, not a one-time impulse investment where the
capital stock overshoots the steady state. With capital, only undershooting is
possible (Result 4). The animal stock may, on the other hand, both over- and
under-shoot the optimal steady state (Result 5). In general, one of the controls
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will be singular along the approach path while the other is set to zero, if the upper
investment constraint does not bind (Result 6).

In the social planner solution, the animal stock of the individual farmer repre-
sents a public good value because of landscape preservation. The steady state is
characterised when internalising this stock externality, and we find that this so-
lution demands more animals, in addition to more capital, compared with the
private solution. Possible policy instruments are studied to achieve social opti-
mality, and we find that both a meat price subsidy and an animal stock subsidy
can reach the optimal number of animals as well as the optimal capital require-
ment. However, we find that the stock subsidy is more efficient than the meat
price subsidy as an identical steady-state allocation can be reached with lower
costs for the regulator (Result 7). An alternative policy instrument not consid-
ered here could have been per hectare grazing payment scheme. However, as
land is not included in our model an assessment of this type of policy instrument
is outside the scope of our analysis. Numerical examples illustrate the various
results.

In both the private and social solution, we have focused on situations with a
unique interior equilibrium. However, with different specifications of the cost
function there may be several equlibria. With a positive discount rate, the
choice of steady state will then in general depend on the initial situation, so
that the system is history dependent. The dynamics of such a system will be a
rather straightforward generalisation of the system analysed here however,
once the optimal steady state is identified. Another possible extension is to
include an absolute limit on the number of animals per square metre of
housing, typically set by authorities to secure animal health. If this constraint
binds along the approach path it will imply maximum investment together
with positive harvest of animals. If the capacity utilisation constraint is
binding in the steady state, it will imply singular steady-state harvest along
with maximum investment.

The main contribution of this paper is related to the role of capital which is
used here for maintaining the animals and hence plays no role in the harvesting
process. In addition, we assume a domestic animal stock where the unit harvest
cost is stock independent, and natural growth is density independent and hence
also unaffected by stock size. Given that these assumptions also are valid in
other types of production involving domestic renewable resources, the model
here may have wider applications. Possible examples include other forms of
livestock management and other areas of modern agricultural production, as
well as aquaculture. The model may also possibly be extended into management
of other types of natural resources, like terrestrial wildlife.
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K., Jónsdóttir, I. S., Magnússon, B., Mortensen, L. E., Mysterud, A., Olsen, E., Skonhoft,
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Appendix

Optimal approach paths

As indicated in Section 3.3, the optimal trajectories result from a combination of
extreme and singular controls. We know that both controls can be singular sim-
ultaneously only at an interior steady state, so that one of the control constraints
must always bind outside an equilibrium. Whenever the animal stock is above
the HS-schedule, it will be harvested down instantaneously (or more precisely,
within one-time period), until the HS-schedule is reached since Ht is uncon-
strained from above. Then either (i) the system will follow the HS-schedule,
with singular harvest for a period of time, or (ii) harvest is set to zero, in
which case the HS-schedule acts as a switch between extreme controls. Ignoring

the case where Ht . HS, which is impossible for any more than one-time period,
we now consider the various alternative control regimes. The different cases can
be best understood with reference to Figure A1 where a situation with a unique
interior equilibrium is depicted. The singular control schedules are in accord-
ance with the specific functional forms used in Section 5 [equations (10′) and
(11′)]. Four different initial states, labelled A, B, C and D, are shown along
with the optimal approach paths originating from them. Note that initial states
A and C have the same value for the animal stock, whereas initial states B
and D represent the same capital stock value. These properties are further
exploited in the Section. Figure A1a demonstrates the first three cases, where
the upper investment constraint does not bind along the approach path.

Case 1: Ht = 0, I = IS. The only possibility when investment is singular
outside of the steady state is that harvest is zero. This happens when, as from
an initial situation such as A or B, the initial capital stock is below the
steady-state level and the system has been controlled to reach the singular in-

vestment schedule. The system will then follow the IS-schedule (11) towards
the steady state, when the investment constraint does not bind.

Case 2: H = HS, It = 0. From an initial situation such as point D where both
stocks are above their interior steady-state levels, the animal stock is harvested
down until the HS-schedule (10) is reached, and the system moves leftwards

along the HS-schedule towards the equilibrium. Note that the IS-schedule
plays no role here, and is therefore represented by a dashed line in the figure.

Case 3: Ht = 0, It = 0. Here both controls are set to zero, which happens
when the state of the system is below both singular control schedules, as at
point C. This control regime continues until one of the two singular control
schedules is reached, and one of the two above alternatives takes over.

The next two ‘intermediate’ cases, where the upper investment constraint

prevents the system from following the IS-schedule, are shown in Figure A1b.
Both these cases depend on the system having reached either the HS-schedule

or the IS-schedule below and to the left of the equilibrium. This may happen
if the initial states are given by points A or B.

Case 4: Ht = 0, It = Imax. When HS , 0, meaning that following the
HS-schedule would require restocking of animals, which is omitted in our
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model, and IS . Imax, so that the maximum investment constraint does not

allow the system to follow the IS-schedule either, the state of the system will

be somewhere below the HS-schedule and above the IS- schedule.
Case 5: H = HS, I = Imax. This situation arises when the system has reached

the HS-schedule (9), either after an initial impulse harvest, or from a situation
such as in case 4, but the maximum per period investment is not sufficiently
large to detract the system from the HS-schedule. The system will then follow
the HS-schedule to the steady state.

The last situation to consider is the alternative steady state where the upper
investment constraint is binding. Figure A1c demonstrates. The equilibrium
can now be found as a point on the HS- schedule, below and to the left of the inter-
section point, with investment set to its maximum level at every point in time,

I∗ = Imax , IS. As shown in the figure, the approach path is along the
HS-schedule from both directions in this case. However, for sufficiently low

stock values it is still possible to follow the IS-schedule, as the animal stock
growth is a constant share of the animal stock size, whereas the maximum in-
vestment is assumed to be independent of the size of the existing capital stock.

The different control scenarios can be further characterised by dividing the
state-state space into three regions, with three different transitional control
regimes. Region I: above the HS-schedule; impulse harvest, Region II: below

Fig. A1. Optimal approach paths, unique steady state. Private optimisation problem.
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the HS-schedule, above the IS-schedule; Ht = 0, It = Imax and Region III: below
both schedules; Ht = It = 0.

As is evident from Figure A1, the singular control schedules act either as
switch lines or approach paths, depending on the control constraints. The
approach path is identified as a bold line, which in Figure A1a consists of the

part of the IS-schedule (11), that is, to the left of the optimal steady state, and
the part of the HS-schedule (10) that is to the right of the equilibrium. The
upper constraint on investment may also entail that the HS-schedule must be fol-
lowed even from the left, at least when the equilibrium is sufficiently close. This
situation is depicted in Figure A1b,c.

Whenever the initial point is above the singular harvest schedule, a situation
exemplified by points A and D in Region I, the stock will be slaughtered down
immediately until the HS-schedule is reached. If the state of the system is now
above the singular investment schedule, the HS-schedule acts as a switch and
harvest is set to zero, as is the case when starting from point A. If not, the rest
of the approach path is along the HS-schedule, as with the trajectory from
point D. When starting from below both schedules, as from points B and C,
the singular approach path is the one of the control schedules that is encountered
first, after a period with zero harvest and investment. As indicated in Figure 1a,
the approach path is thus the lower one of the two singular control schedules,
when feasible. As seen on Figure 1b and c, however, a part of this control
path may not be feasible if the upper investment constraint binds. In this case

only the leftmost part of the IS-schedule can be followed, while the equilibrium

is encountered along the HS-schedule from both directions. The IS-schedule
may then act partly as a switch between zero and maximum investment,
which the trajectory from point B indicates.

As indicated in the main text (Section 3.3), the two first dynamic results regard
the monotonicity of the approach paths, and are related to results from the fish-
eries literature. First observe that the approach path is monotonic with respect to
both X and K along the singular control schedules and in Region II (see the dis-
cussion above). Also note that (i) in Region I there is only impulse harvest and no
investment and (ii) in Region III the monotonic part of approach path may be
encountered on either side of the equilibrium if K0 . K∗ and X0 , X∗. The
first of these results is stated as Result 4 in the main text.

Proof of Result 4. Positive investment cannot occur in any of the two regions
outside the monotonic part of the approach path. Hence, overshooting is impos-
sible. Undershooting happens if, from Region III with K0 . K∗ and X0 , X∗,
the monotonic part of the approach path is reached where Kt , K∗.

Proof of Result 5. When X0 . X∗ and K0 , K∗ in Region I, the animal stock
will be reduced immediately until the monotonic part of the approach path is
reached whereXt , X∗, implying undershooting. From Region III with
K0 . K∗ and X0 , X∗, overshooting occurs if the monotonic part of the
approach path is reached where Xt . X∗.
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