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Abstract 12 

The literature on 'fish wars', where agents engage in non-cooperative exploitation of single fish 13 

stocks or interacting fish stocks is well established, but age and stage structured models do not 14 

seem to have been handled within this literature. In this paper we study a game where two agents, 15 

or fishing fleets, compete for the same fish stock, which is divided into two harvestable age classes. 16 

The situation modelled here may be representative for many fisheries, such as the Norwegian North 17 

Atlantic cod fishery where the coastal fleet targets old mature fish while the trawler fleet targets 18 

young mature fish. We analyse the game under different assumptions about the underlying 19 

information available to each fleet and the actions of the agents. The outcomes of the games are 20 

compared to the optimal cooperative solution. The paper provides several results, which differ in 21 

many respects from what are found in biomass models. The analysis is supported by numerical 22 

examples.  23 
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1.Introduction 28 

Marine fisheries are frequently a source of international conflicts and often characterized by 29 

suboptimal resource management. Fish stocks spread across vast distances, and are often present 30 

both in the high seas and within the exclusive economic zones of one or more countries at the same 31 

time. Many fish species are also highly migratory, travelling along coastlines and up and down 32 

rivers, spending much of their lifetime outside of the breeding grounds, and are hence subject to 33 

harvest from different agents at different points in time. A particular aspect of this situation is that 34 

different age categories of the same stock frequently reside within the economic zones of different 35 

countries. In this case, different fleets do not strictly speaking aim for the same fish, but they 36 

nevertheless affect each other’s harvest and profit through the biological interaction of the stock. 37 

A similar situation may also occur between fleets that are distinguished not by nationality, but by 38 

different gear, thus aiming for different age categories of the same stock. This situation, which is 39 

not adequately handled within the existing literature on biomass models and sequential fishing, is 40 

not uncommon. Examples include the Norwegian North Atlantic cod that feeds in the Barents 41 

region, thus subject to harvest by trawlers, but where the old mature fish migrates along the 42 

Norwegian cost to spawn, there being exploited by small scale coastal fishing vessels. This fishery 43 

has been extensively studied, see e.g., see e.g. Sumaila (1997) and Armstrong (1999). Other 44 

examples in the same vein include the Southern bluefin tuna that spends its immature phase along 45 

the coast of Australia, but then migrates to the high seas in the Indian Ocean. Similar descriptions 46 

apply to the Canada halibut and the North Sea herring, and in general to anadromous species, such 47 

as salmon that spawns in rivers but lives most of its life in the open sea. These are some of the 48 

world’s most valuable fisheries. 49 

 50 

The literature on 'fish wars', where agents engage in non-cooperative games of exploiting a fish 51 

stock, has grown large since the seminal contributions of Munro (1979) and Levhari and Mirman 52 

(1980). A survey is provided by Kaitala and Lindroos (2007). For our purpose, the literature on 53 

‘sequential’ fishing, where agents alternate in exploiting a common stock that migrates between 54 

economic zones, is of particular relevance. Hannesson (1995) studies the possibility for self-55 

enforcing agreements in such a sequential fishery, and McKelvey (1997) expands the framework 56 

to consider the possibility of side payments. Laukkanen (2001) shows that the effectiveness of 57 

trigger strategies to maintain a cooperative equilibrium is undermined when stock recruitment is 58 
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subject to stochastic shocks. However, these studies all employ biomass models, implicitly 59 

assuming that the fish caught in one area is identical to the fish caught in another. Age structured 60 

models, on the other hand, are still scarce in the economic literature, as noted by Skonhoft et al. 61 

(2012). The seminal book on bioeconomic modeling by Clark (1990) treats the Beverton-Holt 62 

model to some extent (Beverton and Holt 1957), but puts main emphasis on biomass models. 63 

Important contributions by Reed (1980), Charles and Reed (1985) and Getz and Haight (1989) 64 

have subsequently enhanced the economic understanding of the exploitation of age structured fish 65 

stocks. In a more recent contribution, Tahvonen (2009) presents a thorough study of the optimal 66 

harvesting of age structured stocks, under the assumption of non-selective gear. See also Tahvonen 67 

(2010) for a general survey, and Quaas et al. (2013). Very few studies address age structured stocks 68 

in a game theoretic setting. One example is Lindroos (2004) who examines the benefit of 69 

cooperation in the Norwegian spring-spawning herring fishery. Two other notable examples that 70 

both study the North Atlantic Norwegian cod fishery mainly through numerical analysis include 71 

Sumaila (1997) and Diekert et al. (2010). Sumaila analyses the difference in profitability between 72 

a trawler fleet and a coastal fleet, and demonstrates several results that concur with the findings in 73 

the present paper. Specifically, the observation that the least profitable fleet in a cooperative 74 

harvesting scenario, which typically may be the trawler fleet that targets the smaller fish, may have 75 

a strategic advantage in a non-cooperative situation due to the biological interaction of the stock. 76 

Thus, the least profitable fleet may be able to drive the other fleet entirely out of business, with 77 

large consequences for overall profit. The age structure of the fishery thus gives rise to a non-78 

cooperative game that is even more harmful than the standard one found in biomass models. 79 

Diekert et al. (2010) assume symmetric players, i.e. two trawler fleets, that compete both through 80 

mesh size and fishing effort. They show that a non-cooperative solution implies ‘fishing down the 81 

size categories’, and that the outcome of a non-cooperative open loop equilibrium is both far from 82 

the cooperative optimum and close to the status quo situation in terms of profit and stock size. 83 

  84 

In the present study we do not attempt to accurately describe a particular fishery, but to analyze a 85 

stylized situation where different age categories of a fish stock reside within two different economic 86 

zones, or management areas. The exploitation of the stock is modeled as a game between two fleets 87 

that aim for different cohorts, but nevertheless affect each other’s profitability through the 88 

biological interaction of the stock. We derive analytical results characterizing the equilibrium 89 
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solutions under different management regimes. First, overall optimality is addressed, which under 90 

certain conditions also can be interpreted as a cooperative equilibrium with side payments. Second, 91 

we discuss the situation where both fleets are unable to organize internally and hence exhibit 92 

myopic behavior, and derive conditions for one of the fleets to be excluded from the fishery in this 93 

case. Third, the situation where one fleet is uncoordinated and the other behaves as a single entity 94 

is studied. It is shown that, depending on parameter values, both coexistence and exclusion is 95 

possible in all different scenarios. The results are subsequently illustrated with a numerical 96 

example. 97 

 98 

The paper is organized as follows. In the next section 2, the population model with two harvestable 99 

age classes is formulated. In section 3 we analyze the optimal harvest regime under cooperation 100 

Section 4 presents the non-cooperative solution where we first focus on myopic exploitation. 101 

Additionally, we also study a Stackelberg solution where one the agent is myopic while the other 102 

one has a long-term management view. In section 5 some numerical illustrations are provided. 103 

Section 6 concludes the paper. 104 

 105 

2. Population model and harvest 106 

For analytical tractability, we use a population model consisting of only three cohorts; recruits 107 

(juvenils)
0,tX ( 1year  ) , young mature fish 

1,tX (1 2year  )  and old mature fish 
2,tX (108 

2 year ) . Young and old mature fish are both harvestable, but the juveniles are not subject to 109 

fishing mortality. While recruitment is endogenous and density dependent, natural mortality is 110 

assumed fixed and density independent for all three age classes. The population is measured just 111 

before spawning, and in the single period of one year, three events take place in the following 112 

order; first, recruitment and spawning, then fishing and finally natural mortality.   113 

 114 

The number of juveniles is governed by the recruitment function 115 

(1) 
0, 1, 2,( )t t tX R X X , 116 

where (0,0) 0R   and ,/ ' 0i t iR X R    , together with '' 0iR  ( 1,2i  ). The number of young 117 

mature fish follows next as 118 

(2) 
1, 1 0 0,t tX s X  , 119 
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where 
0s is the fixed natural survival rate. Finally, the number of old mature fish is described by 120 

(3) 
2, 1 1 1, 1, 2 2, 2,(1 ) (1 )t t t t tX s f X s f X     , 121 

where 
1,0 1tf  and 

2,0 1tf  are the fishing mortalities, or harvest rates, of the young and old 122 

mature stage, respectively, while 
10 1s 

 
and 

20 1s 
 
are the natural survival rates. When 123 

combining Eqs. (1) and (2) we have  124 

(4)  1, 1 0 1, 2,,t t tX s R X X  . 125 

Eqs. (3) and (4) represent a reduced form model in two age-classes, where both equations are first 126 

order difference equations.  127 

 128 

The population equilibrium for fixed fishing mortalities ,i t if f is defined by 
, 1 ,i t i t iX X X  129 

( 1,2)i   such that Eq. (3) holds as 130 

(3’) 
2 1 1 1 2 2 2(1 ) (1 )X s f X s f X    , 131 

and Eq. (4) as 132 

(4’)  1 0 1 2,X s R X X .  133 

(3’) is identified as the spawning constraint while (4’) is the recruitment constraint. An interior 134 

equilibrium holds for 
10 1f  only; that is, not all the young mature fish can be harvested. An 135 

interior equilibrium is shown in Figure 1, where the recruitment function is specified as the 136 

Beverton-Holt function (see numerical section 5). Based on this function, the recruitment constraint 137 

describes the number of mature fish as a positive, increasing, and convex function of the number 138 

of young mature fish. Taking the differential of Eq. (4’) yields 2 1 0 1 0 2/ (1 ') / ' 0dX dX s R s R   . An 139 

increasing recruitment function therefore requires
0 1 ' 1s R  which holds for all positive values of 140 

2X with our Beverton-Holt function. Higher fishing mortalities shift down the spawning constraint 141 

(3’) and hence lead to smaller stocks, while higher natural survival rates work in the opposite 142 

direction. The ratio of old to young mature fish is given by the slope of the spawning constraint,143 

2 1 1 1 2 2/ (1 ) / (1 (1 ))X X s f s f    . Therefore, none of the parameters pertaining to the recruitment 144 

function influence the equilibrium fish ratio, while it is evident that lower fishing mortalities of 145 

both age classes increase the proportion of old mature fish.  146 

  147 
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 Figure 1 about here 148 

 149 

Two fishing fleets exploit the fish stock, and each fleet targets a particular age class of the fish. As 150 

explained in the introduction, this harvesting scenario fits reality in many instances, either because 151 

of differences in gear selection, and/ or because the two age classes reside in different fishing zones. 152 

In most instances, the catches are composed of specimens from different cohorts and there is hence 153 

‘bycatch’ irrespective of the fact that the fleets might be able to influence their catch composition. 154 

For example, the mesh size may be increased, or other gears may be adopted to leave the younger 155 

and smaller fish less exploited (see, e.g., Beverton and Holt 1957 and Clark 1990, and the more 156 

recent Singh and Weninger 2009). However, here we neglect bycatch and assume perfect targeting, 157 

where fleet one targets the young mature fish (stock one) while fleet two targets the old mature fish 158 

(stock two). We choose a specific production function in our analysis, the so-called Baranov 159 

function (see, e.g., Quinn 2003) defined as  160 

(5)  ,

, , 1 ii tq E

i t i tH X e


  ; ( 1,2i  ), 161 

where ,i tH  is the harvest of fleet i  at time t (in # of fish), ,i tE is the fishing effort, interpreted 162 

as, e.g., the number of standardized fishing vessels, and 
iq  is the productivity, or ‘catchability’, 163 

parameter  (1/effort). The Spence function exhibits decreasing marginal effort productivity. 164 

Notice also that with this harvesting function, the fishing mortalities can never reach one for a finite 165 

amount of effort, and extinction of the population is hence not possible within our modelling 166 

framework. 167 

 168 

With the fishing mortality rate defined as , , ,/i t i t i tf H X ( 1,2i  ), the mature age class growth Eq. 169 

(3) becomes 170 

(6) 1 2, 2,1

2, 1 1 1, 2 2,
t tq E q E

t t tX s e X s e X
 

   , 171 

while ,1 i tq E
e


 is interpreted as the escapement rate of the stock after harvesting and 1 ,(1 )i tq E
e


  172 

hence represents the fishing mortality, or harvest rate.  173 

 174 

3. Exploitation I: Cooperation 175 

3.1 The optimal program 176 
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We start by looking at the cooperative solution where the maximum present-value profit of both 177 

fleets is determined jointly. As we wish to focus on biological interaction, we assume that the fleets 178 

do not interfere with each other through market mechanisms (but see e.g., Quaas and Requate 179 

2013). The fish prices are thus assumed not to be influenced by the size of the catches, and they 180 

are constant through time. Therefore, with
2 1p p as the fixed fish prices (Euro/fish) and 

ic as the 181 

unit effort cost (Euro/effort), also assumed to be fixed, 182 

   1 21, 2,

1 1, 1 1, 2 2, 2 2,1 1t tq E q E

t t t t tp X e c E p X e c E
 

       describes the current total profit. The 183 

constraints of this problem are the biological equations (4) and (6). In addition, the initial stock 184 

sizes, ,0iX , are assumed known.  185 

 186 

The Lagrangian of this present-value maximizing problem may be written as 187 

   

 

1, 2,

1,

1 2

1 2 2,

1 1, 1 1, 2 2, 2 2,

0

1 1, 1 0 1, 2, 1 2, 1 1 1, 2 2,

{ 1 1

}

t t

t t

q E q Et

t t t t

t

E E

t t t t t t t t

q q

L p X e c E p X e c E

X s R X X X s e X s e X



 


 



   

 

     

         


, 188 

where 0t  and 0t  are the shadow prices of the biological constraints (4) and (6), respectively, 189 

and 1/ (1 )   is a discount factor with 0   as the discount rate. Following the Kuhn-190 

Tucker theorem the first order necessary conditions (with , 0i tX  , 1,2i  ) are  191 

(7) 1 1, 1 1,

1, 1 1, 1 11 1 1,1/ 0t tEq q E

t t t tL E p q X e c s q X e
 

      ; 1, 0tE  , 0,1,2,...t  , 192 

(8) 2,2 2,2

2, 2 2, 2 1 2 2,2/ 0t tE E

t t t

q q

tL E p q X e c s X e
 

      , 2, 0tE  , 0,1,2,...t  , 193 

(9)  1 1, 1 1,

1, 1 1 0 1 1 1/ 1 ' 0t tE E

t t t t

q q
L X p e s R s e  

 

         , 1,2,3,...t  , 194 

and 195 

(10)   2, 22 2 ,

2, 2 1 0 2 1 2/ 1 ' 0t tE E

t t t t

q q
L X p e s R s e  






        , 1,2,3,...t  . 196 

 197 

The interpretation of the control conditions (7) and (8) is straightforward. Condition (7) states that 198 

the fishing effort of fleet 1 should take place up to the point where the marginal profit is equal to, 199 

or below, the economically,  , and biologically, 
1s , discounted marginal biomass loss of the 200 

immature stage, as evaluated by the shadow price of the biological constraint (6). Condition (8) is 201 

analogous for the old mature stock. Eqs. (9) and (10) steer the shadow price values. Rewriting Eq. 202 
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(9) as  1 1, 1 1,

1 1 0 1 1 11 't tE q E

t t t

q
p e s R s e  

 

     , it is seen that the number of young mature fish 203 

should be maintained such that the recruitment shadow price equalizes the marginal harvest value 204 

plus its growth contribution to recruitment and the old mature stage, as evaluated by their shadow 205 

prices with biological and economic discounting taken into account. Eq. (10) can be given a similar 206 

interpretation.  207 

 208 

The control conditions (7) and (8) may be rewritten as  209 

(7’) 
1 1,

1 1,

1, 1 1 1

1

1 1,

1
/

;
t

t

E

E

q

t

tq

t

X e c p qp

s X e






 
 

 
 

1, 0tE  , 0,1,2,...t   210 

and 211 

(8’) 
2

2,

2,

2

2,2
1

2

2 2 2

2 ,

/t

t

q

t

tq

t

E

E

X e c p qp

s X e






 
 

 
 

; 2, 0tE  , 0,1,2,...t  , 212 

respectively. These equations reveal that the survival rates is and the economic parameters
ip , 

iq  213 

and ic ( 1,2i  ) alone determine the optimal harvesting priority. Fertility plays no direct role. 214 

Therefore, although the recruitment function certainly impacts on the optimal harvest of the two 215 

stocks, its properties are not observed directly in the conditions characterizing the optimal 216 

harvesting policy. This is stated as: 217 

 218 

Result 1: Fertility and differences in fertility among the harvestable year classes have no direct 219 

effect on the harvesting priority.   220 

 221 

This result is similar to what is obtained by Reed (1980), but in a model where the maximum 222 

sustainable yield (MSY) is maximized and hence no economic parameters are included.  223 

 224 

As we have 2 1p p and the natural survival rates do not differ too much, we may suspect that 225 

harvest of the old mature age class should be given priority if the harvest cost of fleet 1 exceeds 226 

that of fleet 2. That is, 1, 0tE  and 2, 0tE  , if the harvest cost discrepancy 1 1 2 2/ /c q c q holds. In 227 

the opposite situation with 1 1 2 2/ /c q c q , an interior solution with 1, 0tE  and 2, 0tE  can be a 228 

possible optimal outcome. Altogether, when the possibility of no harvesting at all is ignored, the 229 



9 

 

optimal harvest policy comprises the three possibilities; Case i) with 1, 0tE   and 2, 0tE  , Case 230 

ii) with 1, 0tE   and 2, 0tE  , and Case iii) with 1, 0tE   and 2, 0tE  . Case i) is the interior 231 

solution and in contrast to Skonhoft et al. (2012) it is a possible option here as the Lagrangian is 232 

strictly concave in the control variables because of decreasing marginal effort productivity. This is 233 

stated as: 234 

 235 

Result 2: Optimal harvesting under full cooperation may involve harvesting of both stocks, stock 236 

1 only or stock 2 only. 237 

 238 

Combining (7’) and (8’) and assuming the interior solution Case i) gives the condition 239 

 
1 1, 2,2

1 1, 22 ,

2 2 21

2

1, 1 1 1 2,2
1

1 1, 2,

/ /
0

t t

t t

E Eq q

t t

tq q

t

E E

t

X e c p q X e c p qp p

s sX e X e


 

 

    
     

   
   

,  240 

which states that share of the escapement of each stock above its zero marginal profit level /i i ic p q  241 

is equal among the two stocks, when weighted by the price-to-survival ratio /i ip s . The stock that 242 

has the highest price-to-survival ratio will have the smallest escapement share above its zero 243 

marginal profit level, and can be said to be harvested more aggressively. Therefore, with equal 244 

survival rates and a higher market price for the old mature stock, stock 2 should be harvested more 245 

intensively than stock 1, which is a result in accordance with previous studies (i.e. Diekert et. al., 246 

2010, Skonhoft et al. 2012). In the special case where
1 1 1 2 2 2/ /c p q c p q , the escapement in terms 247 

of number of fish is simply higher for the stock with the lower price-to-survival ratio. Still with an 248 

interior solution, Eqs. (7') and (8’) may also be written as  249 

21 , ,1 2

1
1

1 1

2
2

, 221 ,2

1 1
t tE Eq q

t t

c c
p p

s sq X e q X e
 

   
     

   
   

.  250 

The content in the brackets expresses the marginal profit. Therefore, we may state: 251 

 252 

Result 3: In the cooperative solution with joint harvest of both stocks, the ratio between marginal 253 

profit at the end of the harvesting season and the own stock survival rate is equal between the two 254 

fleets at every point in time. 255 

 . 256 



10 

 

Note that this is an equation that holds at every point in time and hence indicates a fixed 257 

relationship between the escapement of the two fishable stocks also outside the steady state. It is 258 

independent of discounting and all parameters pertaining to the recruitment function. Notice also 259 

that if the price – survival ratio is equal among the two stocks, i.e.,
1 1 2 2/ /p s p s , the 260 

escapement ratio will be given as 1 2,21 , 1 2 2

1

1 2

2

,

1

,
t tE Eq q

t t

c q s
X e X e

s q c

 
 . Through the spawning constraint 261 

(6), we then find 1 2,2 1 1 2
2, 1 2 2,

1 2

( ) tE

t t

qq c q c
X s e X

q c






 . In a steady state with 2, 1 2,t tX X  , the effort 262 

use of fleet 2 is then determined by cost and survival parameters alone and is hence independent 263 

of the recruitment relationship and discounting. All dynamic considerations are addressed by 264 

adjusting the effort of fleet 1 only.  265 

 266 

When still assuming the interior solution Case i) with fishing of both fleets, the optimality condition 267 

for each age class can be rewritten in terms of the optimal escapement ,

,
i i tq

i t

E
X e


 as a function of 268 

the economic parameters and the shadow price of stock 2 as 269 

(11) ,

,

1

/
, 1,2i i tq i i

i t

E

i i t

c q
X e i

sp  





 


. 270 

With
1 0i ts    , that is, when either the discount factor or the shadow price of the spawning 271 

constraint is zero, myopic adjustment results where both age classes are harvested down to their 272 

zero marginal profit levels /i i ic p q each year (more details section 4.2 below). 273 

 274 

In Case iii) with 1, 0tE  and 2, 0tE  combination of conditions (8’) and (9’) yields 275 

 
22 ,

2 1
1 1

1 1 1,2 2,

2

2

1 1
tE tq

tt

c c
p p

s s q Xq X e
 

   
        

  

  276 

. 277 

Notice that this case with 1, 0tE   may be an optimal solution even if positive profit is possible for 278 

fleet 1. As indicated above, we may suspect that this case can be an optimal option when the harvest 279 

cost discrepancy 1 1 2 2/ /c q c q is ‘high’. In this situation, we hence find that the marginal net 280 

benefit of letting the young mature fish stay one more year in the ocean exceeds that of the marginal 281 
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natural mortality loss. This condition is seen even more clearly if we assume cost free harvest. The 282 

above relationship then simply reads
12 2 1/ /p s p s . 283 

 284 

Case ii) with 1, 0tE  and 2, 0tE  gives in a similar manner 285 

 
1 1,

1 2
1 1

1 2 2,1 1,

2

2

1 1
tE tq

tt

c c
p p

s s q Xq X e
 

   
        

  

 . 286 

. 287 

The interpretation of this condition is parallel as above, and may only be an optimal option if the 288 

discrepancy 2 2 1 1/ /c q c q is ‘high’. If we again assume cost free harvest, this is not a possible 289 

solution as long as 12 2 1/ /p s p s  holds. 290 

 291 

3.2 Steady state analysis 292 

In a steady state with the optimal harvesting policy as Case i), the biological constraints read (4’), 293 

and: 294 

(6’)  1 1 22

2 1 1 2 2

q qE E
X s e X s e X

 
  , 295 

such that the escapement rates i iEq
e
 , or fishing mortalities (1 )i i

i

q E
f e


  ( 1,2i  ), are constant 296 

through time. In Case ii) and Case iii), the spawning constraint (6) becomes 1 1

2 1 1 2 2

EqX s e X s X
 297 

and 2 2

2 1 1 2 2

q EX s X s e X
  , respectively. As already explained, the slope of the spawning 298 

constraint indicates the fishing pressure. However, it is difficult to draw general conclusions about 299 

the differences of this slope between our three different harvest options. Therefore, harvest option 300 

Case i) may be either more aggressive or less aggressive than Case ii), and so on. However, 301 

rewriting the spawning constraint in Case i) as 
1

2

1

2

1
2 1

2

/
1

Eq

Eq

s e
X X

s e







 indicates that more effort of 302 

both fleets contributes to reducing the slope of the spawning constraint and hence leads to smaller 303 

stocks and a lower ratio of stock 2 compared to stock 1 in biological equilibrium. See Figure 1. 304 

The same happens with Case ii) or Case iii) as the optimal harvest options.  305 

 306 

We may expect that the steady state exploitation of each stock increases with small upward shifts 307 

in own price and catchability coefficient, and decreases with higher unit costs. We may also expect 308 
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that a lower discount factor  (i.e., a higher discount rate ) will increase the harvesting pressure 309 

of both stocks. However, except that we know that 0  yields myopic exploitation and lower 310 

stock sizes (see also section 4.2 below), the comparative static effects are generally difficult to 311 

assess. This will be so for parameter shifts within the various harvesting schemes, but also when 312 

changes in the biological and economic environment give a switch between the different schemes. 313 

Numerical section 5 below demonstrates several comparative static results. 314 

 315 

3.3. Dynamic properties 316 

Above some properties of possible steady states with a constant number of fish through time was 317 

analyzed. As the profit is non-linear in the controls, economic theory suggests that fishing should 318 

be adjusted through some kind of saddle-path dynamics to lead the fish population to steady state. 319 

However, the gradual adjustment may not be a regular one in our age-structured fish population 320 

because control of the fish population may lead to corner solutions where one of the age classes is 321 

left unexploited. The age structure may for example imply that the population could be above that 322 

of the optimal steady state level for one age-class and at the same time lower than the optimal 323 

steady state for the other age-class. That is, some degree of under- or overshooting due to the age-324 

class formulation, but also because of the discrete time formulation, may be present. Section 5 325 

below demonstrates the dynamics numerically.    326 

 327 

4. Exploitation II: Non-cooperation 328 

4.1 The setting  329 

We now consider the situation where the two fleets are owned and managed by separate agents that 330 

exploit the fish stocks in a non-cooperative manner. We choose to focus on two situations that we 331 

believe to be quite realistic. In the first scenario both fleets behave as myopic agents, thus 332 

maximizing instantaneous profit without taking their own impact on the next period’s stock into 333 

account. This represents a decentralized decision environment, where each individual vessel owner 334 

neglects its own impact on the standing biomass. The other scenario under consideration here is 335 

where fleet 1 is coordinated and behaves as a sole owner, while fleet two is myopic. This can be 336 

viewed as a Stackelberg game with fleet 1 as the leader and fleet 2 as the follower. We compare 337 

the steady state outcomes of these two harvesting schemes, both with each other and with the 338 

cooperative solution.  339 
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 340 

4.2 Myopic exploitation   341 

4.2.1 Optimality conditions 342 

We first consider a myopic solution, where both agents maximize their respective current profit 343 

while taking the stock sizes as given. The number of vessel owners in the two fleets may be large, 344 

and myopic behavior may result from open access dynamics. However, it may also be realistic with 345 

a small number of agents. Indeed, as shown by Clark (1980), myopic behavior may occur even 346 

with only two agents, in a continuous time setting. It may be noted here, however, that due to the 347 

discrete nature of the system positive profit is still present in the fishery because the stock is able 348 

to renew itself between the harvesting seasons.  For fleet 1 where the current profit reads349 

 1,1

1, 1 1, 1 1,1 tq E

t t tp X e c E


   , we find the myopic profit maximizing condition as 350 

(12) 1 1,

1, 1, 1 1,1 1/ 0tq E

t t tE p q X e c


     ; 1, 0tE  , 0,1,2,...,t    351 

while  352 

(13) 2,2

2, 2, 2 2 2, 2/ 0tq E

t t tE p q X e c


     ; 2, 0tE  , 0,1,2,...t   353 

is for fleet 2. These two conditions together with the biological constraints (4) and (6) thus 354 

determine the effort use, the stock sizes, and the dynamic interaction between the two agents. As 355 

already indicated (section 3 above), conditions (12) and (13) coincide with conditions (7) and (8) 356 

in the cooperative solution if the discount factor is set to zero.  357 

 358 

4.2.2 Steady state analysis 359 

Harvest is profitable if and only if marginal profit exceeds marginal cost for zero effort; that is,360 

,/ 0i i i i tp c q X  , or , /i t i i iX c p q ( 1,2i  ). We then find ,

, /i i tE

i i

q

i t iX e c p q


 with , 0i tE   so 361 

that escapement equals the zero marginal profit stock level. When this holds for both agents, Case 362 

i) prevails. Inserting these conditions into the spawning constraint (6) yields 363 

2, 1 1 1 1 1 2 2 2 2/ /tX s c p q s c p q   . In a steady state, the above zero effort marginal profit condition364 

2 2 2 2/X c p q  then implies 1 1 1 1 2 2 2 2 2 2 2/ / /s c p q s c p q c p q  .  Therefore, we find that365 

2 2 2 2

1 1 1 1

(1 ) /
( )

/

p s c q

p s c q


 must hold if both fleets should be in operation. As an example, assume that 366 
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1 1 2 2/ /c q c q  holds. The above inequality then demands 2 2

1 1

(1 )p s

p s


 . With 

1 2 0.5s s  this 367 

condition is thus for sure satisfied as the market value of old mature fish is higher than that of the 368 

young. In Case ii) with 1, 1 1 1/tX c p q  and 2, 2 2 2/tX c p q , and hence no fishing of fleet 2, the 369 

steady state spawning constraint reads
1

2

2 1

1 1

1

s c
X

s p q



. The condition 

2 2 2 2/X c p q now implies 370 

2 2 2 2

1 1 1 1

(1 ) /
( )

/

p s c q

p s c q


 . With identical fleet costs, this harvesting scheme is therefore not a possible 371 

option when
1 2 0.5s s  . These observations are stated as: 372 

 373 

Result 4: In a myopic non-cooperative setting the possibility for fleet 2 to be in the fishery depends 374 

only on the price and cost parameters, along with the survival rates of the two mature stocks. 375 

 376 

The steady state effects of parameter changes on effort use and stock sizes are generally as 377 

expected. For each fleet that is in operation, we find that effort decreases with /i i ic p q , for any 378 

given size of the stock. In Case i) where the spawning constraint reads 2 1 1 1 1 2 2 2 2/ /X s c p q s c p q 379 

, 2X is affected positively by increased cost/price ratio of fleet 2 targeting this stock. However, the 380 

old mature stock is also positively affected by a higher cost/price ratio of fleet 1. As there is a 381 

positive relationship between 
1X  and 

2X  through the recruitment constraint, which in this Case 382 

i) reads  1 1 1 1 21 0 1 2 2 2, / /X s R X s c p q s c p q  , we find similar effects also for stock 1. Therefore, a 383 

higher cost/price ratio of fleet 2 also shifts up the size of stock 1. For Case ii), where the stocks are 384 

defined through 1
2 1 1 1

2

( / )
(1 )

s
X c p q

s



and  1 11 20 1 11, / (1 )X s R X s c p q s  , and Case iii) with 385 

2
2 1 1

2 2

2

c
X

qp
s s X  and 2

1 0 1 2 1 1

2 2

,
c

X s R X s s X
p q

 
  

 
 the same results prevail. This is stated as: 386 

 387 

Result 5: In the myopic fishery game, a higher cost/price ratio for fleet 1 not only increases the 388 

steady state young mature fish stock, but also the old mature stock targeted by fleet 2, and vice 389 

versa.  390 

 391 
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Higher survival rates 
1s  and 

2s  also shift up the spawning constraint in all cases, and hence lead 392 

to higher stocks of both categories of fish. The same happens with the biological parameters that 393 

increase the spawning productivity, as these changes shift the recruitment constraint outwards (see 394 

section 5 below). 395 

 396 

4.2.3 Comparing with cooperative solution 397 

The suspected result is that non-cooperative myopic harvesting yields a higher exploitation 398 

pressure than when the exploitation is steered by long-term cooperation. In what follows, this is 399 

demonstrated for the steady state solutions where we compare case for case. However, notice that 400 

this comparison excludes the possibility that the myopic game solution and the cooperative 401 

solution for the same parameter values may lead to different steady state cases. In the cooperative 402 

solution Case i) with harvest of both fleets, the spawning constraint reads 403 

11 22

2 1 1 2 2,

q E

t

q EX s X e s X e 
  . From the control conditions (7) and (8) it is also evident that we 404 

find /i iEq

i i i i iX e c p q


  , with 0i  ( 1,2i  ), when 0  . Therefore, the old mature stock 405 

size can be described as 2 1 1 2 2 2 2 2( / ) ( / )i i iX s c p q s c p q    through the spawning constraint. 406 

When comparing with 2 1 1 1 1 2 2 2 2/ /X s c p q s c p q   from the Case i) myopic solution, it is then 407 

evident that the old mature stock size will be larger in the cooperative solution than in the myopic 408 

game solution. The size of the young mature stock will accordingly be larger as well.  409 

 410 

In Case ii) 1 1

1 1 1 1 1/
Eq

X e c p q


  together with
2 0E  describes the optimal control conditions in 411 

the cooperative solution. The spawning constraint may therefore now be written as 412 

2 1 1 2 2( / )i i iX s c p q s X   , or 1
2 1

2

( / )
(1 )

i i i

s
X c p q

s
 


. Comparing with the Case ii) myopic 413 

solution 1
2 1 1 1

2

( / )
(1 )

s
X c p q

s



 it is again evident that the size of the mature stock will be lower 414 

in the myopic solution than in the cooperative solution. Therefore, the size of the young mature 415 

stock will be larger in the cooperative solution as well. We find the same outcomes in Case iii). 416 

These observations are stated as: 417 

 418 
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Result 6: In steady state, the fish stocks will be more heavily exploited in the myopic game solution 419 

than in the cooperative solution within all three possible harvesting scenarios.  420 

 421 

Notice that nothing is inferred about the effort use in the above comparison between the myopic 422 

non-cooperative and cooperative solution. We may suspect that higher stocks may be followed by 423 

lower effort use for both fleets in the cooperative solution. However, as shown in the numerical 424 

section 5, this will not necessarily be the case.   425 

 426 

4.2.4 Dynamics 427 

Finally, we consider the dynamics in the myopic game situation where we again analyze case for 428 

case. In Case i) the spawning constraint reads 2, 1 1 1 1 1 2 2 2 2/ /tX s c p q s c p q   . Therefore, starting 429 

with an old mature stock 2,0X , it jumps to 1 1 1 1 2 2 2 2 2,1/ /s c p q s c p q X  in period 1 and stays at this 430 

level for the rest of the game; that is, 2, 2,1 2tX X X  for all 2,3,4...t  . The corresponding 431 

dynamics for the young mature stock is found through the recruitment constraint (4) as432 

 1, 1 0 1, 2,t tX s R X X  for 1,2,3,...t  . For the given initial value 1,0X this describes a non-linear 433 

first order difference equation and yields a stable equilibrium when
10 ' 1s R  . With the Beverton – 434 

Holt recruitment function this stability condition will be satisfied (section 2 below).  435 

 436 

In Case ii) where fleet 2 is unprofitable, the linear difference equation 2, 1 1 1 1 1 2 2,/t tX s c p q s X    437 

describes the spawning constraint. Accordingly, 2 1 1 1 1 2/ (1 )X s c p q s  yields the steady state of 438 

the old mature stock. The young mature stock dynamics is then found through439 

 1, 1 0 1, 2,,t t tX s R X X  with a recursive link from the evolvement of the old mature stock. The 440 

equilibrium is locally stable, which is confirmed by calculating the Jacobian matrix441 

0 1 0 2

2

( ' 1) '

0 (1 )

s R s R
J

s

 
  

  
where we find det 0J  and 0TrJ  when 0 1' 1s R  .  442 

 443 

In Case iii) with unprofitable harvest of fleet 1, the spawning constraint reads444 

2, 1 1 1, 2 2 2 2/t tX s X s c p q   . Therefore, the jointly interacting equations 1, 1 0 1, 2,( , )t t tX s R X X   and445 
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2, 1 1 1, 2 2 2 2/t tX s X s c p q   now describe the fish stock dynamics The Jacobian matrix of this system 446 

is 
0 1 0 2

1

( ' 1) '

1

s R s R
J

s

 
  

 
, still with with 0TrJ  . We also now find447 

0 1 1 2[1 ( ' ')] 0DetJ s R s R    because the recruitment constraint intersects with the spawning 448 

constraint 2, 1 1 1, 2 2 2 2/t tX s X s c p q   in equilibrium from below (Figure 1). These observations are 449 

stated as: 450 

 451 

Result 7: The dynamics of the myopic game solutions are locally stable in all three possible 452 

harvesting scenarios.  453 

 454 

4.3 Stackelberg solution  455 

4.3.1 Optimality conditions 456 

We now assume that only one of the two fleets is myopic and maximizes profit each year without 457 

considering the future. At least for fleet 2 this may be a rather realistic case as the coastal fishery 458 

typically consists of many small vessels, and where the owners are not sufficiently organized to 459 

behave strategically so as to affect the harvest decision of fleet 1. In what follows, we thus choose 460 

to focus on the situation where fleet 2 is the myopic player. As all strategic considerations then 461 

belong to fleet 1, and although we assume simultaneous moves, the model can be considered as a 462 

Stackelberg game with fleet 1 as the dominant and leading player. Fleet 2 thus adjusts passively to 463 

the behavior of fleet 1 while fleet 1 takes fleet 2’s optimal adjustment into account before forming 464 

its own harvest decision. 465 

 466 

The game is solved by backwards induction where we first solve the problem of fleet 2 in stage 467 

two. Fleet 2 maximizes current profit  2,2

2, 2 2, 2 2,1 tq E

t t tp X e c E


   while taking the stock size468 

2,tX as given. This gives the same first order condition as Eq. (13) with 2 2,

2 2 2. 2 0tq E

tp q X e c


  . The 469 

Lagrangian of agent 1’s maximization problem is then accordingly formulated as 470 

 471 
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  472 

 473 

. 474 

 475 

The biological shadow prices now reflect that the biological constraints are viewed from the 476 

perspective of agent 1, while the new shadow price 0t  takes into account the harvest restriction 477 

imposed upon agent 1 due to the myopic harvesting activity of agent (fleet) 2. We have 0t   478 

when fleet 2 operates, and 0t   otherwise. 479 

 480 

The necessary first order conditions for maximum for agent 1 are 481 

(15) 1 1, 1 1,

1 1, 1 1 1. 1 1, 1 1 1 1./ 0t tE E

t

q

t

q

t tL E p q X e c s q X e
 

      ; 1, 0tE  , 0,1,2,...t  , 482 

 483 

(16)  1 1, 1 1,

1 1, 1 1, 1, 1 0 1 1, 1 1/ 1 ' 0t tq E E

t t t t

q
L X p e s R s e   

 
        , 1,2,3,...t  , 484 

and 485 

(17)  2 2,22,

1, 1 0 2 1, 1,1 2 2 2 21,/ ' 0t tE E

t

q q

t t t tL X s R s e p q e   
 

       , 1,2,3,...t  . 486 

Conditions (15) and (16) are similar to conditions (7) and (9) in the cooperative solution, 487 

respectively. On the other hand, Eq. (17) differs from Eq. (10) because of the inclusion of the new 488 

shadow price reflecting the harvest constraint imposed from agent 2, but also because the marginal 489 

harvest value of the old mature fish stock is absent. Both these factors work in the direction of a 490 

lower shadow price of the old mature stock. This is more clearly observed when rewriting Eq. (17) 491 

as 222 2, ,

21, 1, 1 0 22 , 1 21' t tq q

t t

E E

tts R s e p q e   
 

     and comparing with t  in the cooperative 492 

solution.  493 

 494 

Assume that 0t   holds and hence that fishing is profitable also for fleet 2. Optimal escapement 495 

of the young mature stock is given from condition (15), and depends positively on
1. 1t 

. But if 1,t  496 

decreases with 
t  as indicated by Eq. (17), effort from fleet 1 will be higher in the Stackelberg 497 

case than under cooperation. Further, as 0t   still holds because the spawning constraint must 498 

bind, fleet 1 effort is lower than under myopic adjustment. Hence, fleet 1 will not overfish, in the 499 

   1,

1, 2 2,

1

2 2,1

1 1 1, 1 1, 1, 1 1, 1 0 1, 2,

0

1, 1 2, 1 1 1, 2 2, 2 2 2. 2

{ 1 ,

[ ]}

t

t t t

q Et

t t t t t t

t

E E E

t t t t t

q q q

t

L p X e c E X s R X X

X s e X s e X p q X e c

 

 







 



 



      

     
 


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sense that it operates with negative marginal profit, to keep fleet 2 out of business. This will hold 500 

in in the transitional dynamics phase and in steady state. The dynamics are studied more closely in 501 

the numerical section 5. 502 

 503 

4.3.2 Steady state analysis 504 

We now assume two possible exploitation schemes in the Stackelberg steady state solution; Case 505 

i) with harvest of both fleets and Case ii) with 
2 0E   and 

1 0E  . In both cases Eq. (15) reads 506 

1 1,

1 1,

1, 1 1 1

1

1 1,

1
/

0
t

t

q

t

t

E

E

t

q

X e c p qp

s X e






 
  

 
 

with the same interpretation as in the cooperative solution. In 507 

both these cases we also find the same spawning constraints as in the cooperative solution. 508 

However, again it is difficult to say which of these two cases that give the highest exploitation 509 

pressure. On the other hand, it is possible to prove that the Stackelberg solution yields higher stock 510 

sizes compared to the myopic game situation where we again compare case for case. In Case i) in 511 

the Stackelberg solution we find 1 1

1 1 1 1 1/
Eq

X e c p q


  , where again 
1 represents a positive 512 

number, together with 2,2

2. 2 2 2/tq E

tX e c p q


 . Therefore, the spawning constraint in Case i) in the 513 

Stackelberg solution may be written as
2 1 1 1 1 1 1 2 2 2 2/ /X s c p q s s c p q    . Comparing with 514 

2 1 1 1 1 2 2 2 2/ /X s c p q s c p q   in the myopic solution, it is then evident that the spawning constraint 515 

in the Stackelberg game will be located above the spawning constraint in the myopic game solution 516 

in this Case i). Hence, both mature stocks will be higher. We find the same outcome in Case ii). 517 

This is stated as: 518 

 519 

Result 8: In a steady state both mature stocks will be more heavily exploited in the myopic game 520 

than in the Stackelberg game in harvesting schemes Case i) and Case ii). 521 

 522 

5. Numerical illustration 523 

5.1 Data and functional forms 524 

The above theoretical reasoning will now be illustrated numerically. As our theoretical model is 525 

somewhat stylized, we do not aim to provide an accurate empirical description of a particular 526 

fishery. However, the parameter values used here are meant to give a reasonable description of the 527 

workings of the model. The baseline survival rates for the three age categories are set to 0 0.6s   528 
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and
1 2 0.7s s  which may concur with average estimates for the North Atlantic Norwegian cod 529 

fishery (see, e.g., Sumaila 1997). As indicated, the recruitment function is specified as the 530 

Beverton-Holt function   2,

1, 2

1

1

,

, 2,

,( )

( )

t

t t

t

t

t

X X
R X X

X X












 
 with 1,500   as the scaling 531 

parameter (# of 1,000 fish) and 500  as the shape parameter (# of 1,000 fish). Because it is 532 

conventionally assumed that fertility is positively related to the weight of the fish (e.g., Getz and 533 

Haigh 1989, p. 154), we impose higher fertility for the old mature fish than for the young by 534 

including the relative fertility parameter 0.5  as the baseline value. When solving Eq. (3’) and 535 

(4’) in absence of harvest and with the Beverton-Holt function, these baseline parameter values 536 

imply that the steady state stocks equal  1 0 1 2/ 231/ 7sX s s         and 537 

 12 1 2/ 1 1687X s X s    (# of 1,000 fish). We also have  
2

1 1 2/' 1R X X      538 

everywhere in the range      1 2 0, / , , 0,sX X       , which are the stock values that satisfy 539 

the spawning constraint that ensures stability under myopic harvesting. In addition we find that 540 

2 1 1' ' / 'R R R  , reflecting higher fertility for the old mature stock. The impact of changes in 541 

these parameters can be understood in light of Figure 1 above, where, for instance, higher spawning 542 

productivity through increased values of  and   shift the recruitment constraint outwards.  543 

 544 

As for the economic parameters, we set 1 2p  (Euro/fish), 2 3p  (Euro/fish), and 
1 2 10c c   545 

(Euro/effort). We further set 2 0.01q   (1/effort) while we assume 1 0.03q   to reflect that the 546 

fleet that targets the young mature fish (typically a trawler fleet) may have higher catchability than 547 

the fleet targeting the old mature fish (typically small coastal vessels).  Together these imply the 548 

zero marginal profit stock levels as 1 1 1/ 167c p q   and 2 2 2/ 333c p q   (# of 1,000 fish), which 549 

are well below the steady state stock levels in absence of harvest, meaning that profit is possible 550 

for both fleets individually. The discount rate is assumed to be 0.04  , implying 551 

 1/ 1 0.9615    . We first present results with the baseline parameter values and 552 

subsequently demonstrate the implications of changes in the biological, economic and 553 

technological conditions through varying the fertility parameter, the discount rate, and the 554 

catchability parameter for fleet one. 555 
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 556 

5.2 Results baseline parameters1 557 

We start with presenting the basic dynamic results. Figure 2 demonstrates first the development of 558 

the two stocks under the three management scenarios; cooperation, myopic behavior by both fleets 559 

and the Stackelberg game where fleet 1 optimizes and fleet 2 adjusts passively (denoted 560 

Stackelberg1). The solid lines show (pre harvest) stock sizes ,i tX , the dashed lines show 561 

escapement ,

,
i i tq E

i tX e


, and the dotted lines show the zero marginal profit stock levels, 562 

/i i i iX c p q  ( 1,2i  ) . As is seen, the stocks stabilize quickly towards a steady state after an 563 

initial impulse harvest. This happens for both stocks under all three management scenarios. For the 564 

old mature stock in the myopic non-cooperative solution, this is just as expected from the 565 

theoretical analysis. Also, just as shown in sections 4.2 and 4.3, the steady state stock sizes are 566 

larger under cooperation than in the other scenarios, and escapement is kept well above the zero 567 

marginal profit level for both stocks. In the myopic scenario, both stocks are harvested down to 568 

their zero marginal profit levels each year, while the Stackelberg solution only differs slightly from 569 

the myopic case, in that the leader maintains a somewhat higher young mature stock. We have also 570 

run the various scenarios with different initial situations, and we find the dynamic to be ergodic, 571 

that is, unique steady states are approached under different initial conditions.  572 

 573 

 Figure 2 about here 574 

 575 

Figure 3 shows the development of effort over the same harvesting period. For our baseline 576 

parameter values, we find that Case i), with fishing effort of both fleets, represents the optimal 577 

fishing scheme in the cooperative solution as well as in the two non-cooperative solutions. In the 578 

myopic solution, it was shown that 2 2 2 2

1 1 1 1

(1 ) /
( )

/

p s c q

p s c q


 must hold if both fleets should be in 579 

operation and this holds for the baseline parameter values despite the substantially higher 580 

catchability coefficient of fleet 1. In the cooperative solution, it is optimal with higher effort use of 581 

fleet 2, targeting the old mature stock, than of fleet 1. This is because the old mature stock 582 

commands a higher price per fish, and that this price effect dominates the cost effect from the 583 

                                                 
1 The optimization was performed with the fmincon solver in MATLAB release 2016b. 
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higher catchability of fleet 1. In the two non-cooperative solutions, we find the opposite pattern. 584 

The reason is that the high effort of fleet 1 with correspondingly low levels of both stocks renders 585 

the old mature stock barely profitable under the baseline parameter values. 586 

 587 

  Figure 3 about here 588 

 589 

5.3 Steady state and sensitivity analysis 590 

We now examine the sensitivity of the solutions obtained to changes in certain parameter values 591 

where we focus on the steady state. Table 1 shows first the detailed steady state outcomes with 592 

baseline parameter values, and where profit is included as well. As already seen, the optimal 593 

cooperative solution implies higher effort from fleet 2 than from fleet 1 while the opposite happens 594 

in the two non-cooperative solutions. On the other hand, we find a larger steady state old mature 595 

stock than young mature stock in the cooperative solution and the opposite in the non-cooperative 596 

solutions. Both total steady state profit and the profit accruing to fleet 2 are substantially higher in 597 

the cooperative solution than in the other scenarios. However, fleet 1 individually obtains higher 598 

profit in the non-cooperative scenarios, where fleet 1 effort is higher than fleet 2. The benefits from 599 

cooperation must therefore be shared in some way between the two fleets such that fleet 1 finds it 600 

profitable to stay in the cooperation. Otherwise, a prisoner’s dilemma-like situation will result 601 

where none of the fleets find it rational to cooperate. The cooperative solution is thus not stable 602 

without side payments. The outcomes do not differ much between the wholly myopic solution and 603 

the Stackelberg1 situation where fleet 1 acts as the leader. As also can be seen from Table 1, the 604 

Stackelberg solution yields a somewhat lower total profit than the myopic solution. This may seem 605 

surprising, but remember that we report steady state profit, and not present-value profit. Therefore, 606 

this result, depending among other on the choice of discount rate, could be reversed if net present 607 

value instead was reported2.  608 

 609 

 Table 1 about here 610 

 611 

                                                 
2 Indeed, this actually happens with the baseline discount rate 4 % ( 0.04  ). Results can be obtained from the 

authors upon request. We have also studied the Stackelberg game with fleet 2 as the leader, and where we find that 

this solution with the baseline parameter values also yields lower total steady state profit than the myopic solution. 

Results from this game can also be obtained from the authors. 
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Next, Figures 4 - 6 show how the steady state values of the stocks and efforts in the cooperative 612 

solution are affected by changes in the catchability of fleet 1, the discount rate and the fertility 613 

parameter, respectively. In Figure 4, the fleet 1 catchability coefficient
1q  is varied in the range 614 

from 0.02 to 0.05. For low levels of 
1q , not surprisingly, we obtain Case iii) where only fleet 2 is 615 

in operation and escapement of the young mature stock equals the pre harvest stock level. 616 

Escapement of the old mature stock is kept above the zero marginal profit level. Increasing 
1q  to 617 

about 0.027 leads to Case i) where both fleets are in operation, and further increase leads to a 618 

gradual more fleet 1 effort while the effort of fleet 2 is reduced correspondingly. The steady state 619 

level of both stocks are reduced. For 1 0.047q  , we finally obtain Case ii) with only fleet 1 in 620 

operation, and the escapement of the young mature stock approaches the zero marginal profit level 621 

 622 

 Figure 4 about here 623 

 624 

Figure 5 demonstrates the steady state relationship between the discount rate, varied from 0 625 

to 0.25   (implying the discount factor is varied from 1 to 0.8), and the state stocks and efforts. 626 

It is seen that, for a low discount rate a corner solution with Case iii) where only fleet 2 is utilized 627 

is optimal. Increasing the discount rate leads as expected to smaller stocks and to a gradual shift 628 

towards targeting also the young mature stock, and thus we obtain Case i). Therefore, while a 629 

higher discount rate reduces both stocks, the effort effect is somewhat surprisingly ambiguous as 630 

fleet 1effort use increases while fleet 2 effort reduces. 631 

 632 

 Figure 5 about here 633 

 634 

Figure 6 finally shows the effect of changes in the fertility parameter   on the optimal steady 635 

state stocks and efforts. The relative fertility of the young mature stock is varied from 0 to 1. The 636 

baseline value is 0.5  , and with 1  both stocks have equally high fertility. With a very low 637 

value of  , it is not beneficial with harvest of fleet 1 and Case iii) represents the optimal 638 

cooperative solution. Increased fertility of the young mature stock leads gradually to higher effort 639 

of fleet 1 and hence a stronger targeting of the young mature stock. The pre-harvest level of the 640 

young mature stock increases with fertility, but escapement is reduced for both stocks. 641 
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 642 

 Figure 6 about here 643 

 644 

6. Concluding remarks 645 

In this paper, we have considered a simple formulation of a ‘complete’ age structured fishery model 646 

with a harvest trade-off among two harvestable and mature age classes, and where recruitment is 647 

endogenously determined. These two harvestable age classes are targeted by two separate fishing 648 

fleets where we assume perfect fishing selectivity. The fishing is governed by the Baranov catch 649 

function, and the fishing prices and effort costs are assumed fixed. Three dynamic different harvest 650 

scenarios are studied. First, we analyze the cooperative solution where the two fleets act so to 651 

maximize the joint present value harvesting profit. Next, we consider two scenarios where the two 652 

fleets are managed by separate agents exploiting the fish stocks in a non-cooperative manner. We 653 

start by analyzing the situation where both fleets behave as myopic agents, thus maximizing current 654 

profit without taking own impact on next period’s stocks into account. The other non-cooperative 655 

scenario is where fleet 1 is coordinated and behaves as a sole owner maximizing present value 656 

profit, while fleet 2 is myopic. This can be viewed as a Stackelberg game with fleet 1 as the leader 657 

and fleet 2 as the follower.  658 

 659 

In the cooperative solution, we find that fertility and differences in fertility among the harvestable 660 

and mature year classes have no direct effect on the harvesting priority. Moreover, we demonstrate 661 

that the optimal harvesting may involve harvesting of both stocks, or only stock 1, or only stock 2. 662 

Typically, stock 2 only will be exploited when the higher fish price of this age class is accompanied 663 

with lower harvesting effort costs. In the cooperative solution when both stocks are exploited we 664 

also find that the stock with the highest price-to-survival rate can be said to harvested more 665 

aggressively. In the non-cooperative myopic situation it is shown that the possibility for fleet 2 to 666 

be in the fishery depends only on the price and cost parameters together with the survival rates of 667 

the two mature stocks. In steady state, we also find that the fish stocks will be more heavily 668 

exploited in the game solutions than in the cooperative solution. Overfishing of both stocks will 669 

therefore take place when the exploitation is uncoordinated. When comparing the Stackelberg 670 

solution and the myopic solution, it is also shown that the steady state stocks will be more heavily 671 

exploited in the myopic game than in the Stackelberg game. Therefore, coordinated management 672 
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is needed to omit economic losses, and where the quota management should be related to the 673 

different harvestable age classes, and not the total harvested biomass.  674 

 675 

The theoretical reasoning is supplemented with some numerical illustrations. Under the baseline 676 

parameter scheme, we find, that fleet 1 obtain a higher profit in the non-cooperative solutions than 677 

in the cooperative solutions. The cooperative solution is thus not stable without side payments. We 678 

also find, somewhat surprisingly, that the non-cooperative myopic solution yields a higher total 679 

profit than the non-cooperative Stackelberg solution. This is surprising because one of the fleets 680 

has long-term considerations in the Stackelberg solution. However, we also find that this outcome 681 

hinges upon the choice of discount rate. Comparing the cooperative solution for different levels of 682 

harvest productivity shows that there will be a switch between the different harvesting schemes. 683 

For example, not surprisingly, fleet 2 only will be in operation if the productivity of fleet 1 is ‘low’. 684 

Changing the discount rate and fertility also demonstrates switches among the different harvesting 685 

schemes, and where we find that while a higher discount rate reduce both stocks the effort effect is 686 

ambiguous.    687 

 688 
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 780 

 781 

Figure 1. Biological equilibrium with fixed fishing mortalities. 782 
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 785 

Figure 2. Stock sizes over time (in # of 1,000 fish). Cooperation, myopic behavior by both 786 

fleets and the Stackelberg game with fleet 1 as leader (Stackelberg1). 787 

 788 
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  789 

Figure 3. Fishing effort over time. Cooperation, myopic behavior by both fleets and the 790 

Stackelberg game with fleet 1 as leader (Stackelberg1). 791 
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 795 

Figure 4. Steady state stocks and efforts cooperative solution. Variation of fleet 1 catchability 796 

coefficient 
1q (basline value 

1 0.03q  ).  797 

 798 

 799 

 800 

 801 

 802 

Figure 5. Steady state stocks and efforts cooperative solution. Variation of the discount rate 803 

 (baseline value 0.04  ). 804 
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 806 

Figure 6. Steady state stocks and efforts cooperative solution. Variation of the fertility 807 

parameter (baseline value 0.5  ). 808 
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Table 1. Steady state stocks, effort and profit. Cooperation, myopic behavior by both fleets 828 

and the Stackelberg game with fleet 1 as leader (Stackelberg1). 829 

 Cooperative 

solution 

Non-cooperative 

myopic 

Stackelberg1 

1X (# of 1,000 

fish)  

614 489 501 

2X (# of 1,000 

fish 

767 350 376 

1E (effort) 
7 36 30 

2E (effort) 
25 5 12 

1 (1,000 Euro)  140 246 252 

2 (1,000 Euro) 
475 40 7 

 (1,000 Euro) 
615 286 259 
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