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We analyse the standard optimal control fishery biomass model and derive some novel
results on optimal management when fish stocks are low. We show that as long as it is not
optimal to let the stock become extinct and the marginal benefit of harvesting is bounded
below infinity for all harvest levels, there will always be an interval with low stock sizes
where it is optimal not to harvest. This result does not depend on any assumption that
marginal harvesting cost per unit increases with decreasing stock size. We then prove that
under weak conditions the shadow price on the fish stock always goes to infinity as the
stock approaches zero. The results are generalized to a particular class of age structured
models.
© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Clark (1973) and Clark andMunro (1975) presented dynamic fishery models that gave the theory of renewable resources a
proper capital theoretic foundation. The basic fishery model entails one control variable, one state variable; the planning
horizon is infinite time and the problem is autonomous. When the profit function is nonlinear in the control variable and
there is an optimal path to the steady state, this steady state should be approached gradually along two saddle paths, or stable
manifolds (see, e.g., Kamien and Schwarz, 1991). The standard model has usually applied an ecological lumped parameter
model of the form _x ¼ GðxÞ � hwhere x is the size of the fish stock in biomass and h is the harvest rate. It has been recognized
for a long time that optimal extinction in thesemodels depends on the relativemagnitude of the interest rate and the intrinsic
growth rate, G0ð0Þ, in addition to the unit cost of harvesting (Clark, 1973; Cropper et al., 1979). Although this model is well
understood, some wrinkles remain to be ironed out. One is the question of harvest levels at low stock levels, where it is has
been known that in some versions of the standard fisheries model it is optimal to set harvest equal to zero for low stock levels.
This is commonly attributed to either the bang-bang nature of problems that are linear in the control, Clark andMunro (1975)
or an assumption that harvest costs are stock dependent and that the marginal cost of harvest becomes infinite when the
stock approaches zero, (Leung and Wang, 1976; Lewis and Schmalensee, 1977).1
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In what follows, we show that these assumptions are not necessary. In order to properly analyse optimal harvest levels at
low stocks, it is crucial to examine the behaviour of the shadow price at low stock levels. We argue below that analysing the
properties of the shadow price is equivalent to analysing the stable saddle path in a phase diagram in stock/shadow price
space. If we interpret the stable saddle path as a function that maps the state variable into the shadow price it is evident that
the stable saddle path is in fact the derivative of the value function. We then demonstrate that the shadow price of a
renewable resource goes to infinity if the growth in the resource is zero at zero stock. This fact has remarkably not been noted
in the literature, except for the case where revenue is a linear function of harvest levels, Nævdal (2016). In his milestone book
on natural resource economics Colin Clark stays silent on this. He draws the basic fishery model phase-diagram in the stocke

harvest space, but the saddle path is not drawn for low harvest levels, Clark (1991, p. 99) and also Conrad and Clark (1987, p.
56). In the well-recognized book by Leonard and Long (1992) on optimization and dynamic control models, the saddle path
illustrating a schooling fishery is only indicated for a restricted set of values in the stock e shadow price space (Leonard and
Long (1992, p. 296) and is not drawn for values of the stock close to zero.

In Section 2 below, we first formulate and analyse our baseline model exemplified by a schooling fishery where the net
harvest benefit is a concave function of harvest. In Section 3, we next apply fast/slow-dynamics and show that the results
apply to at least some age structured models. Section 4 concludes the paper with a discussion of the results and relating them
to the concept of harvest control rules.

2. The canonical fisheries model

The following is the basic version of the fisheries model where a schooling fishery is considered. In a schooling fishery
there are no stock dependent harvest costs. We assume that the net instantaneous benefits from harvesting is given by a
continuous and strictly concave function D(h) with D(0)¼ 0, and where D0ðhÞ > 0 over an interval [0, hmax] where hmax�∞.
For notational convenience we denote D0ðhÞ as d(h). Note that strict concavity of D(h) ensures that d(h) has an inverse defined
for all positive values of its argument. In order to ensure that our results are not the result of assuming infinite derivatives of
D(h), we postulate that 0< d(0)<∞ which is a crucial assumption driving our results. The natural growth function G(x) is
taken to be strictly concave and satisfy G(0)¼ 0, G0ðxÞ>0 over some interval [0,x ) and G0ðxÞ<0 for x > x. We assume that the
intrinsic growth rate exceeds that of the discount rate, G0ð0Þ > r, which is reasonable for most fish species It is also assumed
that there is some number K > x, denoted carrying capacity, such that G(K)¼ 0. The specification of G(x) is in line with
standard growth functions such as the logistic one, which is used in our numerical illustrations. The assumptions lead to the
following optimization problem:

Vðxð0ÞÞ ¼ max
h�0

Z∞
0

DðhÞe�rtdt subject to _x ¼ GðxÞ � h; and xð0Þ given; (1)

where h � 0 is the harvest and x � 0 is the size of the fish stock and r � 0 is the discount rate. The current value Hamiltonian

for this problem is:

H ¼ DðhÞ þ mðGðxÞ � hÞ: (2)
Here m is the co-state variable. The Hamiltonian is concave in (h, x), so sufficiency theorems such as Theorem 9.11.1 in
Sydsæter et al. (2005) are fulfilled. The necessary conditions become:

vH
vh

¼ dðhÞ � m � 0 ð¼ 0 if h>0Þ (3)

and
_m ¼ ðr� G0ðxÞÞm: (4)
(3) follows from maximising the Hamiltonian with respect to h, when H is a concave function of h. Transversality con-
ditions must also be checked. By assumption there exist a steady state and we show below that the optimal path converges to
this steady state from any xð0Þ>0 . It is straightforward to check that limt/∞mðtÞðyðtÞ � xðtÞÞe�rt � 0where x(t) is the optimal
state variable and y(t) all other admissible functions. As y(t), x(t) and m(t) are all finite, this expression goes to zero. The
transversality condition given in Theorem 9.11.1 in Sydsæter et al. (2005) therefore holds andwith the rest of our assumptions
implies that sufficient conditions for optimality hold. Control condition (3) implies that d (0)< m 0 h¼ 0 and condition (3)
may be rewritten as:

h ¼ max
�
0; d�1ðmÞ

�
: (5)
Inserting Eq. (5) into the natural growth equation yields next:
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_x ¼ GðxÞ �max
�
0; d�1ðmÞ

�
: (6)
We can use Eqs. (4) and (6) to obtain a phase diagram in the (x, m)-space. The isocline for _x¼ 0 may be constructed as
follows:

_x ¼ GðxÞ �max
�
0; d�1ðmÞ

�
¼ 0

i
m ¼ 4ðxÞ ¼ dðGðxÞÞ cfx : h>0g

(7)
Note that 4(0)¼4(K)¼ d(0) and that 4(x)< d(0) for all x 2(0, K). The isocline for _m¼ 0 is given by:

_m ¼ ðr� G0ðxÞÞm ¼ 0
i

m ¼ 0 or x ¼ G0;�1ðrÞ
(8)
We shall assume that there is a pair (x, y) ¼ (xss, mss) that solves the equations _x ¼ 0 and _m ¼ 0 and hence defines the
equilibrium (steady state) of our model. The isoclines in Eqs. (7) and (8) are depicted and discussed in Fig. 1.

To complete the phase diagramwe need to draw stable manifolds satisfying the directional derivatives. For x> xss this is a
fairly straightforward task. On the other hand, for x< xss it is not obvious whether m along the stable manifold should take
values such that m< d(0) for all x, or m> d(0) if x becomes sufficiently low. We illustrate these two possibilities in Fig. 1 where
we draw two hypothetical paths for a stable manifold for x below its steady state value. Note that both these paths satisfy
directional derivatives for x and m both strictly positive. However, there can only be one stable manifold, so we have to choose
between them. This is done in Proposition 1, which draws on the observation in Fig. 1 that if there exists a stable saddle path
satisfying m< d(0) for all x2 (0, xss), then it must originate from the point (x, m) ¼ (0, d(0)).

Proposition 1. Any path originating from (x, m) ¼ (0, d(0)) can not be a stable manifold.

Proof. If the stable manifold starts at (x, m) ¼ (0, d(0)) then its slope is given by:
Fig. 1. Isoclines in a phase diagram in the (x, m)-space. The isoclines at x¼ 0, x¼ K and m¼ 0 are not drawn. The black arrows indicates system directions on the
isoclines. The star indicates the steady state point (xss, mss) that solves the equations dx/dt¼ 0 and dm/dt and it follows from the directions of the black arrows
crossing the isoclines that it is a saddle point as expected. Lines with arrows indicating movement towards the steady state are hypothetical stable saddle paths.
For values of x below the steady state there are two paths seemingly satisfying directional derivatives for x> 0. One where the stable manifold starts above the
m¼ d(0) line, and one where the line lies below the m¼ d(0) line for all x> 0. If this last possibility is the case, the stable manifold must start at the point (x, m) ¼ (0,
d(0)). Proposition 1 shows that this is impossible, so the stable manifold must start at some point where m> d(0).
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ðdm=dxÞðx;mÞ¼ð0;dð0ÞÞ ¼ ð _m= _xÞðx;mÞ¼ð0;dð0ÞÞ ¼
dð0Þðr� G0ð0ÞÞ

Gð0Þ �max
�
0; d�1ð0Þ

�

¼ dð0Þðr� G0ð0ÞÞ
Gð0Þ ¼ �∞

(9)

This holds under our assumption of an intrinsic growth rate G0ð0Þ that exceeds the rate of discount, and Gð0Þ ¼ 0. This
slope is clearly smaller than the finite slope of the isocline for _x¼ 0, so a stable manifold would enter into the area below the
isocline for _x¼ 0, which implies that the stable manifold cannot go through the steady state.

Proposition 1 has a powerful implication that we sum up in a proposition although the Proof is very simple.

Proposition 2. There exists a non-empty interval [0, x*] where it is optimal to set h ¼ 0.

Proof. It follows from Proposition 1 that there exists a stock level x* where the downward sloping stable manifold crosses
the line m ¼ d(0), and therefore h ¼ 0 for all x 2[0, x*].

In Nævdal (2016) it was proven that if revenue is linear in harvest, the shadow price would go to infinity as the stock
approaches zero. The Proof of this result hinged on the harvest rate being zero if stocks are below the steady state level.
Proposition 2 implies that the proof in Nævdal (2016) may be generalized to the case where harvest costs also are strictly
convex and in this more general case, the shadow price will also go to infinity as the stock approaches zero. This is done in
Proposition 3. Proposition 3 thinks of the stable manifold in a slightly unusual manner. The stable manifold is a continuous
mapping from x to m and it thus makes sense to think of m as a function of x. We can then use the ratio _m= _x and steady state
conditions to construct a differential equation with boundary conditions (Judd, 1998, Ch.10.7).

Proposition 3. Along the stable manifold limxY0mð0Þ ¼ ∞ holds.

Proof. Let (xss, mss) be the known steady state level of the optimally managed system defined by problem (1). Over the
interval [x*, xss] one can find the stable manifold by solving the differential equation:

_m
_x
¼ dm

dx
¼ ðr� G0ðxÞÞm

GðxÞ � d�1ðmÞ ;

with the boundary condition mss ¼ m(xss). By Proposition 2 there exists an x* such that m(x*)¼ d(0). One can therefore find the
solution for m(x) over the interval [0, x*] by solving the following differential equation:

_m
_x
¼ dm

dx
¼ ðr� G0ðxÞÞm

GðxÞ ; mðx*Þ ¼ dð0Þ:

Nævdal (2016) showed that this equation has the solution:

mðxÞ ¼ dð0ÞGðx*Þ
GðxÞ exp

0
@�

Zx*
x

r

GðhÞdh
1
A (10)

and that limxY0mðxÞ ¼ ∞. The calculations are reproduced in the Appendix.
Propositions 1, 2 and 3 enable us to draw amore complete phase diagram depicted in Fig. 2. It is worthwhile to note that as

the stable manifold entails the allowable combinations of x and m along an optimal path, it may also in fact be interpreted as a
function m(x) that gives the derivative of the value function, mðxÞ ¼ V 0ðxÞ. As the value function V(x) clearly must satisfy V(0)¼
0, the value function can be demonstrated in the phase diagram as the area below the stable manifold as indicated by the
shaded area in Fig. 2.
3. Age structured models

We now examine age structuredmodels in order to see if the results from above carry over. In particular, wewant to check
whether the shadow price goes to infinity as the stock approaches zero, and whether this also implies that no harvesting will
occur at low stock levels.

Recent years have seen increased interest in the economics of age structured models and the implications of dropping
lumped parameter models (see, e.g., Tahvonen, 2009, and Skonhoft et al., 2012). Typically, the cohort length of a fish stock is
measured in one year as reproduction usually occurs on an annual basis and fish species often have a life span of many years.
Therefore, to construct a complete age structuredmodel, usually requires several cohorts with year-class specific contribution
to recruitment as well as year-class specific natural survival and harvest rates. Indeed, age structured models quickly become



Fig. 2. Computer generated phase diagram for the model in Eq. (1). Note that m along the stable manifold increases as x goes to zero. As proven in Proposition 3 it
does in fact go to infinity. It crosses the line m ¼ d(0) at x*. From Eq. (5) it should be clear that m � d(0) for x � x* implies that for x � x* we have that h ¼ 0 . The
stable manifold is in fact the derivative of the value function. As V(0) ¼ 0, the area under the stable manifold is therefore the value function. The shaded area
shows V(x*), which is the value of the fishery at the stock level x*. Although Propositions 1-3 hold for general growth and cost functions with the properties stated
in the text, the graph is drawn using a logistic growth function G(x) ¼ rx(1 e x/K) with K ¼ 10 and r ¼ 1. The benefit function D(h) ¼ ph - C(h) ¼ 5h e ½h2, with p ¼
5 as the fixed fish price and C(h) ¼ ½h2 as the cost function. The discount rate has been set to r ¼ 0.05.
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analytically intractable. Herewe analyse two simplified cases. One case where the adult period is relatively short compared to
the time span of the young fish. This may correspond to e.g. wild Atlantic salmon (Salmo salar) where most of the species’ life
history is in the native river (2e4 years) before it migrates into the ocean and spends 1e2 year there before returning back to
spawn in its native river. After spawning it dies (about 90%). The second case we analyse is where the period as a young is
short relative to the time (potentially) spent as an adult. This may correspond to e.g., North-East Atlantic cod (Gadus morhua)
which becomes old enough to spawn at the age of 3 years and may live to become more than 20 years old. In these two
particular cases we can use the differences in the time span of cohorts to utilise slow/fast-dynamics in order to simplify the
analysis (see, e.g., Cr�epin, 2007 and Guttormsen et al., 2008).

We explore these two cases within a very simple age structured model with two cohorts, young, x, and adult, y. Both age
classes are measured in number of fish, and it is assumed that only adult fish are harvested. The growth equation for young
fish is first given by:

_x ¼ Fðx; yÞ � dx: (11)
Production of young individuals is assumed to depend positively on the stock of adults, but survival of young individuals is
assumed to be negatively density dependent. Thus, the recruitment function satisfies F 0y > 0 and F 0x < 0. Additionally, F(x,
0)¼ 0 must hold as production of young individuals requires adults. Note that this implies F 0xðx;0Þ ¼ 0 for all x. We shall also
assume that all double derivatives of F(x, y) are less than or equal to zero. A fraction d enters the stock of adults every unit of
time. The stock of adults grow according to:

_y ¼ dx� gy� h: (12)
Here g is the fixed natural mortality rate and h is again harvesting. We shall assume that there exist a pair (x, y) ¼ (xmax,
ymax) defining the steady state when h¼ 0. .

We assume that only adults are harvested. With the applications we have in mind, cod and salmon, assuming harvest of
older classes only seems fairly innocuous. It is close to impossible to harvest salmon in any significant numbers before they
congregate to spawn. That cod should only be harvested at older age classes seems a fairly robust result, see e.g. Diekert et al.
(2010).
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3.1. Cod

Here it is assumed that y is the slow variable and x that moves instantaneously from steady state to steady state. Therefore
we set _x¼ 0 and obtain from Eq. (11):

dx ¼ Fðx; yÞ0x ¼ 4ðyÞ: (13)
From the assumption that F(x, 0)¼ 0 it follows that 4(0)¼ 0. Implicit differentiation of (13) yields 40ðyÞ ¼ �F 0y=ðF 0x � dÞ > 0.
Defining j(y)¼4(y) e gy implies that the expression for _y may be written as:

_y ¼ jðyÞ � h: (14)
Instantaneous benefit from harvesting is given by D(h). It is straight forward to verify that the problem

max
h�0

Z∞
0

DðhÞe�rtdt subject to _y ¼ jðyÞ � h; and yð0Þ given: (15)

has exactly the same structure as (1), so all the propositions from section 2 apply.

3.2. Salmon

Since Atlantic salmon is characterised by a long period as young before experiencing a short period as adult and dying after
spawning, we can treat x as a slow variable and y as fast variable. The implication of y being a fast variable is that ymoves very
quickly from one steady state to another relative to x. Again, as a simplification, we model this by letting the movement of y
from one steady state to another be instantaneous implying that _y¼ 0 or y ¼ ð1=gÞðdx� hÞfrom Eq. (12). Inserting into Eq. (11)
gives then:

_x ¼ F
�
x; ðdx� hÞg�1

�
� dx (16)
The management problem may then be written as:

max
h�0

Z∞
0

DðhÞe�rtdt subject to _y ¼ F
�
x; ðdx� hÞg�1

�
� dx; xð0Þ given: (17)
We now have an optimization problem with a slightly different structure than in problem (1), so the results from the
previous section can not be taken for granted. The Hamiltonian associated with the problem in (17) is given by:

H ¼ DðhÞ þ m
�
F
�
x; ðdx� hÞg�1

�
� dx

�
(18)
The Maximum Principle gives the following conditions for optimality:

vH
vh

¼ dðhÞ � mF 0y
�
x; ðdx� hÞg�1

�
g�1 � 0 ð¼ 0 if h>0Þ (19)

and
_m ¼ rm� m
�
F 0x
�
x; ðdx� hÞg�1

�
þ dF 0y

�
x; ðdx� hÞg�1

�
g�1 � d

�
(20)
Eq. (19) defines optimal harvest as a function of the stock and the shadow price. Let h(x, m) be the solution to the equation
vH=vh ¼ 0. Then h is defined by:

h ¼ maxð0;hðx;mÞÞ: (21)
We can use these conditions to draw a phase diagram. However, in order to draw a correct diagram we must apply some
care. We need to draw a line that delineates the state space into regions where h> 0 and h¼ 0. From condition (19) we have
that for any x, the lowest value of m such that h¼ 0 is given by
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m ¼ dð0Þ
F 0y
�
x; dxg�1

�
g�1 (22)
One way to interpret (22) is that for a given x the stable manifold lies above the m prescriped by (22), then optimal harvest
is zero. If The stable manifold lies below this m, optimal harvest is positive. The line defined by (22) is illustrated in Fig. 3 as the
h¼ 0 line. The isocline where _x ¼ 0 is constructed in the following manner. Inserting h(x, m) into Eq. (16) gives:

_x ¼ F
�
x; ðdx� hðx;mÞÞg�1

�
� dx ¼ 0 (23)
In particular, when x¼ 0, we have that:

_x ¼ F
�
0;�1

g
hð0;mÞ

�
¼ 0: (24)
But this is only possible if h(0, m)¼ 0 as we have assumed that Fðx;0Þ ¼ 0 . It follows that at x¼ 0, the curve _x ¼ 0 intersects
the curve h¼ 0.

In order to construct the line for _m ¼ 0, wemust acknowledge that the shape of this curve depends onwhether h is positive
or not. If h(x,m)¼ 0, then _m ¼ rm� mðF 0xðx;dxg�1Þþ dF 0yðx;dxg�1Þg�1 � dÞ. The equation _m¼ 0 then has two solutions, m¼ 0 and
x¼ ~x defined by rþ d� ðF 0xð~x;d~xg�1Þþ dF 0yð~x;d~xg�1Þg�1Þ ¼ 0 which is a vertical line. However, when the line _m lies below the
h¼ 0 line, the isocline is a curve given by:

_m ¼ rm� m
�
F

0
x

�
x; ðdx� hðx;mÞ Þg�1

�
þ dF

0
y

�
x; ðdx� hðx;mÞ Þg�1

�
g�1 � d

�
¼ 0 (25)
In order to establish a proposition similar to Propositions 1 abovewe note that in principle we have the same problem. The
stable manifold can either intersect the m-axis where the lines _x ¼ 0 and h¼ 0 intersect in which case h> 0 for all x> 0, or it
can cross the h¼ 0 line at some x* which implies that h¼ 0 for all x2 [0, x*]. It is a straight forward exercise to confirm that it
is the latter that is the case by repeating the Proof in Proposition 1. If the stable manifold starts where the lines _x ¼ 0 and h¼ 0
intersect, then it dips below the line _x ¼ 0which is a contradiction. Proving the existence of x* and that limxY0 m(x)¼∞ is done
by verbatim repetition of Propositions 2 and 3.
Fig. 3. Phase diagram for cohort fishery with fast slow dynamics. At x¼ x*, the stable manifold crosses the h¼ 0 boundary. Thus if x < x* it is optimal to set harvest
levels to zero. Also, m goes to infinity when x goes to zero. The diagram is generated with a version of the growth dynamics where _x ¼ ry(1 e x/K) e dx and _y¼ dx
e gy e h. D(h) is again specified as ph e ½h2. Parameter values are given by r¼ 1, p¼ 5, K¼ 10, r¼ 0.05, d¼ 0.15 and g¼ 0.2.



E. Nævdal, A. Skonhoft / Journal of Environmental Economics and Management 92 (2018) 125e133132
4. Concluding remarks

In this paper we have examined the basic nonlinear control variable biomass fishery model originating from Clark and
Munro (1975), and demonstrated under what circumstances it is optimal to stop harvesting when the stock becomes suf-
ficiently low. Themain assumptions in ourmodel of a schooling fishery are: 1, that the intrinsic (maximum) growth rate of the
fish stock exceeds that of the discount rent. 2, That the growth of the fish stock is zero when the fish stock is zero and 3. That
the marginal net benefit is finite for all harvest levels, and particularly for zero harvest.

The paper provides 3 Propositions and these enable us to draw a more complete phase diagram than what is found in,
among others, Clark (2005) and Leonard and Long (1992). The most important of these propositions from a management
perspective, is that it always exists a strictly positive stock level below which it is optimal to not harvest. This is perhaps not
too surprising. If the value of fish stock grows faster in the ocean than it does in the bank, we would prefer to have the fish
staying in the ocean until it has grown to the point where the return in the ocean is equal to returns in the bank. The non-
negativity constraint on harvesting implies that we cannot put fish into the lake. However, the fact that optimal harvest levels
is always zero for low stock levels also imply that the shadow price of the stock will always go to infinity as the stock goes to
zero. This was proven for both the biomass model and for simple cohort models with fast/slow-dynamics.

In a much cited review article, JimWilen (2000) points out that the huge literature studying optimal harvesting in fishery
models has had negligible impact on actual management in fisheries. He also points out the many reasons for this. However,
there have been several attempts to transform optimized dynamic harvest strategies into more practical applicable harvest
rules. These harvest control rules (HCR) are typically represented by feedback control rules that links the control variable, the
catch or effort, to the state variable, the fish stock. For a review see, e.g., Deroba and Bence (2008). Depending on the
formulation of the current benefit function, these HCR can take many forms including the popular proportional harvesting
rule; that is, a fixed fraction of the stock should be removed every year. Therefore, this rule allows for harvesting when the
stock is close to zero. Our results indicate that harvesting when the stock is close to zero should not be encouraged and that
HCR models that do prescribe it as optimal to harvest at close to zero stock levels depend on an assumption of infinite
instantaneous marginal benefit of harvesting for this to be correct. Another rule initiated by Engen et al. (1997), is the so-
called proportional threshold rule. This HCR indicates that a certain fraction of the fish stock above a certain minimum
stock level, the threshold, should be harvestedwhile there should be no harvest at all below the threshold. This harvest rule is
accordingly in line with our main finding.
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Appendix. The solution to the differential equation in Proposition 3.

Dividing the differential equation by m and integrating over ½x; x*Þ gives:

Zx*
x

1
mðxÞ

dm
dh

dy ¼
Zx*
x

r

GðhÞ dh�
Zx*
x

G
0 ðhÞ

GðhÞ dh

�
ZmðxÞ

mðx*Þ

1
m
dm ¼

Zx*
x

r

GðhÞ dh� �ln�G�x*� �� lnðGðxÞ Þ �

ln
�
mðxÞ
mðx*�

�
¼ �

Zx*
x

r

GðhÞ dhþ ln

 
G
�
x*
�

GðxÞ

!

mðxÞ
mðx*� ¼

G
�
x*
�

GðxÞ exp

0
B@�

Zx*
x

r

GðhÞdh

1
CA
Inserting for m
�
x*
� ¼ dð0Þ and rearranging gives the expression for mðxÞ.
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mðxÞ ¼ dð0ÞG�x*�
GðxÞ exp

0
B@�

Zx*
x

r

GðyÞdy

1
CA
This solution is only valid over the interval (0, x*]. Note that when the integral in this expression converges, m(0) is clearly
infinite. If the integral does not converge, the expression is of the form “0/0” and must be evaluated with L'Hôpital's rule.

Calculating m(0)
Applying L'Hôpital's rule yields

lim
x/0

mðxÞ ¼ dð0ÞG�x*�
lim
x/0

d
dx

0
B@exp

0
B@�

Zx*
x

r

GðhÞ dh

1
CA
1
CA

lim
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G
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lim
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CA r

GðxÞ

lim
x/0

G
0 ðxÞ

¼ dð0ÞG�x*� lim
x/0

r

G
0 ðxÞ � lim

x/0

exp

0
B@�

Zx*
x

r

GðhÞdh

1
CA

GðxÞ

¼ r

G
0 ð0Þ limx/0

dð0ÞG�x*�
GðxÞ exp

0
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Zx*
x

r
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The last line implies that:
lim
x/0

mðxÞ ¼ r

G0ð0Þ limx/0
mðxÞ

This can only be true if m(0)¼ 0 or m(0)¼∞. But because _m<0 in a neighbourhood around x¼ 0 and G(x)> 0 it must be true

that for x close to zero m0ðxÞ ¼ _m= _x<0, which implies that m(0)¼∞.
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