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Abstract 

This chapter develops a sustainable economic yield harvesting model for the wild Atlantic 
salmon (Salmo salar) where the population comprises different age classes. It is shown that 
the weight–fecundity relationship of the spawning population, comprising two age classes, is 
crucial for the maximum sustainable yield fishing composition. In a next step the optimal 
selective fishing is replaced by an optimal non-selective fishing pattern, and the discrepancy 
between these two schemes is analyzed. 
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X.1. Introduction 

For many years, the North Atlantic salmon (Salmo salar) has been one of the most important 

fish species in Norway because of its social, cultural, and economic importance. It was 

traditionally harvested for food, but is today most important to recreational anglers (NOU, 

1999). The abundance has been declining during the last few decades, especially since the 

1990s. There are a combination of various factors behind this development, such as sea 

temperature, diseases, and human activity, both in the spawning streams and through the 

strong growth of salmon sea farming (NASCO, 2004). As the wild stock began to decrease 

during the 1980s, the Norwegian government imposed gear restrictions to limit the marine 

harvest. Drift net fishing was banned in 1989, and the fishing season of bend net fishing, 

taking place in the fjords and close to the spawning rivers, has been restricted several times. 

At the same time, the sport fishing season in the spawning rivers has been subject to various 

restrictions (NOU, 1999). However, despite all these measures taken to secure and rebuild the 

stock, the abundance of wild salmon seems to be at only half the level experienced in the 
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1960s and 1970s. Today, farmed salmon is regarded as the main threat to the viability of the 

wild salmon population because of the spread of diseases through sea lice infection, escapees, 

and environmental pollution (Hindar et al., 2006, Liu et al., 2012).  

 

Wild salmon fishing has been analyzed in many papers from an economic perspective (see, 

e.g., Routledge, 2001; Laukkanen, 2001; Olaussen and Skonhoft, 2008). These are all studies 

based on a biomass approach where ‘a fish is a fish’, while Kulmala et al. (2008) studied 

numerically an age-structured dynamic salmon model. The age model formulated in this 

chapter is much simpler than that of Kulmala et al. as we aim to say something analytically 

about the basic driving forces behind a harvest composition that maximizes the economic 

yield (MEY). For this reason, only biological equilibrium is considered. The analysis has 

similarities with Reed (1980) and Getz and Haight (1988), but we study a different biological 

system in which all the spawning fish, i.e., salmon, die after spawning. This contrasts with 

Reed’s model, where a fixed fraction of the spawning fish (e.g., cod) survives, and enters an 

older year class after spawning. While our analysis is directly related to Atlantic salmon, we 

will find that it fits various Pacific salmon species, such as pink and chum salmon, which also 

die after spawning (see, e.g., Groot and Margolis, 1991). 

 

This chapter is organized as follows. In section two the population model is formulated, and 

where we consider two spawning, and hence two harvestable, age classes.  In section three, 

we find the maximum sustainable economic yield fishing policy. The economic benefit of our 

selective harvesting scheme is next in section four compared to a uniform fishing pattern. The 

theoretical reasoning is numerically illustrated in section five while section six finally 

summarizes and concludes this chapter. 

 

X.2. Population model 

Atlantic salmon is an anadromous species that has a complex life cycle with several distinct 

phases. Freshwater habitat is essential in the early development stages, as this is where it 

spends the first one to four years from spawning to juvenile rearing before undergoing 

smoltification and seaward migration. Then, it stays for one to three years in the ocean for 

feeding and growing and, when mature, returns to its natal or ‘parent’ river to spawn. After 

spawning, most salmon die, as less than 10% of the female salmon spawn twice (Mills 1989). 

The Atlantic salmon is subject to fishing when it migrates back to its parent river. In Norway, 
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most sea fishing takes place in fjords and inlets with wedge-shaped seine and bend nets. This 

fishing is commercial, or semi commercial. In the rivers, salmon are caught by recreational 

anglers with rods and hand lines. The recreational fishery is by far the most important from an 

economic point of view (NOU, 1999). 

 

In what follows, a specific salmon population (with its native river) is considered in terms of a 

number of individuals at time t  structured into recruits 0,tN ( 1yr  ), three young age classes, 

1,tN  (1 2yr  ), 2,tN  ( 2 3yr  ) and 3,tN ( 3 4yr  ), and two adult, spawning classes 

4,tN ( 4 5yr  ), one sea winter (1SW) and 5,tN (5 6yr  ), two sea winter (2SW). 

Recruitment is endogenous and density dependent, and the 2SW has higher fertility than the 

1SW. Natural mortality is fixed and density independent and, as an approximation, it is 

assumed that the whole spawning population dies after spawning. It is further assumed that 

the proportion between the two adult age classes is fixed. This proportion may be influenced 

by a number of factors, such as type of river (‘small’ salmon river vs. ‘large’ salmon river) 

and environmental factors (NOU, 1999). As fishing takes place when the fish returns back to 

its native river (see also above), only the adult spawning classes 4,tN  and 5,tN  are subject to 

fishing.  

 

With tB  as the size of the spawning population, adjusted for different fertility among the two 

spawning classes (see below), the stock recruitment relationship is first given by: 

(1)      0, ( )t tN R B . 

( )tR B  may be a one-peaked value function (i.e., of the Ricker type) or it may be increasing 

and concave (i.e., of the BevertonHolt type). In both cases, zero stock means zero 

recruitment, (0) 0R  . The number of young is next defined as: 

(2)      1, 1 ,a t a a tN s N   , 

where 0,1,2a  , and with sa as the age-specific natural survival rate, assumed to be density 

independent and fixed over time. 

 

As indicated, only the spawning classes are subject to fishing mortality (marine as well as 

river fishing). With 0 1   as the fixed proportion of the adult stock that returns to spawn 

in the first year, the number of spawning fish of this part of the adult population (1SW) is: 
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(3)      4, 1 3 3, 4,(1 )t t tN s N f   , 

where 4,tf  yields the fishing mortality. Accordingly, 4, 3 3, 4,t t tH s N f  is the number of 

harvested 1SW fish in year t . As indicated, the parameter  may depend on various factors, 

but is considered as fixed and exogenous. The rest of this cohort 4, 1 3 3, (1 )t tN s N     stays 

one year more in the ocean. When subject to natural mortality, as well as subsequent fishing 

mortality, on migration back to spawning in the home river, the size of the next year’s 

spawning population (2SW) becomes: 

(4)      5, 1 4 4, 5,(1 )t t tN s N f   . 

Hence, 5, 4 4, 5,t t tH s N f   is the number of harvested 2SW salmon year t . With 4  and 5  as the 

fecundity parameters of the 1SW and 2SW stocks, respectively, and where 2SW is more 

productive, 5 4  , the spawning population in year t  may be written as  

4 4, 5 5,t t tB N N   , or: 

(5)      4 3 3, 1 4, 1 5 3 3, 2 4 5, 1(1 ) (1 ) (1 )t t t t tB s N f s N s f           . 

Equation (2) implies 3, 3 0 1 2 0,t tN s s s N  , or: 

(6)      3, 3 ( )t tN sR B  , 

when also using equation (2) and where 0 1 2s s s s comprises the previous years’ survival rates. 

For given fishing mortalities, equations (6) and (5) yield a system of two difference equations 

of degree five for the two variables 3,tN  and tB . 

 

As already indicated, we are concerned only with equilibrium fishing, or sustainable 

harvesting, in this paper. The population equilibrium for fixed fishing mortalities is defined 

for 3, 3tN N  and tB B  for all t  such that: 

(5)      4 3 4 5 3 4 5 3[ (1 ) (1 ) (1 )]B s f s s f N        , 

and 

(6)      3 ( )N sR B . 

In what follows, (5) is referred to as the spawning constraint, whereas (6) represents the 

recruitment constraint. An internal equilibrium ( 3 0N  and 0B  ) holds only if either 4f or 

5f , or both, are below one; that is, to exclude depletion, both mature classes cannot be totally 

fished down. Notice that this is a necessary but not sufficient condition. Figure X.1 illustrates 
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the internal, unique equilibrium where the recruitment function is of the BevertonHolt type, 

i.e., (0) 0R  , / ' 0tR B R     and '' 0R   (see also numerical section). 

 

 Figure X.1 about here 

 

X.3. The maximum sustainable economic yield harvesting program 

We start to analyze the optimal sustainable harvesting program under the assumption of 

perfect selectivity. With 5 4w w  as the fixed weights (kg per fish) of the young and old 

mature population, respectively, and 5 4p p as the fishing values (NOK per kg), and where 

the 2SW is at least as valuable as the 1SW (Olaussen and Liu, 2011), 

4 4 4 5 5 5 4 4 3 4 5 5 3 4 5 3[ (1 ) ]p w H p w H p w s f p w s s f N        then describes the yearly revenue 

in our salmon fishery. Therefore, the maximum sustainable economic yield problem is 

defined by finding fishing mortalities that maximize  subject to the spawning constraint (5) 

and the recruitment constraint (6).  

 

The Lagrangian of this problem may be written as 

4 4 3 4 5 5 3 4 5 3 3[ (1 ) ] [ ( )]L p w s f p w s s f N N sR B      

4 3 4 5 3 4 5 3{ [ (1 ) (1 ) (1 )] }B s f s s f N          , where   0 and   0 (both in NOK per 

fish) are the shadow prices of the recruitment and spawning constraints, respectively. 

Following the KuhnTucker theorem (see, e.g., Sydsaether et al., 2005), the first-order 

necessary conditions (assuming 3 0N   and 0B  ) are: 

(7)      4 3 4 4 4/ ( ) 0L f N p w  
   


; 40 1f  ,  

(8)      5 3 5 5 5/ ( ) 0L f N p w  
   


; 50 1f  , 

(9)      3/L N    

4 4 3 4 5 5 3 4 5 4 3 4 5 3 4 5(1 ) [ (1 ) (1 ) (1 )] 0p w s f p w s s f s f s s f                , 

and 

(10)      / '( ) 0L B sR B      . 

 

Control condition (7) indicates that the fishing mortality of the ISW population should take 

place at the point where the marginal biomass value gain is equal, below or above its marginal 
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biomass harvest loss, determined by the fecundity parameter and evaluated by the spawning 

constraint shadow price. Condition (8) is analogous for the 2SW. The stock condition (9) says 

that the harvestable population should be managed so that the recruitment constraint shadow 

price  is equal to the total marginal harvest value gain plus the total marginal spawning 

biomass value gain, evaluated at its shadow price. Finally, stock condition (10) indicates that 

the recruitment growth, evaluated at its shadow price, should be equal to the spawning 

constraint shadow price . 

 

From the control conditions (7) and (8), it is observed that only the weight valuefecundity 

ratio /i i ip w   ( 4,5i  ) determines the fishing mortality and the fishing composition and, 

hence, no other factors play a direct role. This outcome differs from the seminal Reed (1980) 

paper, who found that weight together with natural mortality (‘biological discounted’ value) 

directly determined the fishing composition. As indicated, the reason for this discrepancy is 

the different biological characteristics of the fish stocks. While the mature fish die after 

spawning in our salmon model, the spawning fish survive and enter older age classes in the 

Reed model.  

 

Weight and fertility are related and larger and older fish in most instances, if not always, 

indicate higher fertility (e.g., Getz and Haight, 1989). According to McGinnity et al. (2003), 

this relationship for wild salmon is described such that fertility is an increasing, strictly 

concave function of weight (and age) and hence the weight–fertility ratio increases with 

weight (see also numerical section below). With 5 5 4 4/ /w w  together with 5 4p p and 

hence a higher marginal value gain–loss ratio for fishing the 2SW spawning fish, the 

maximum sustainable yield harvesting policy, given by conditions (7) and (8), indicates a 

higher fishing mortality for the 2SW than the 1SW. This is stated as the following 

proposition: 

Proposition 1. With a higher weightfecundity ratio for the old adult subpopulation, the 

maximum yield harvesting policy is governed by a higher fishing mortality of the old 

subpopulation. 

 

There are three possible cases, all corner solutions, that may represent this optimal policy: i) 

*
5 1f   and *

40 1f  , ii) *
5 1f   and *

4 0f  , and iii) *
50 1f   and *

4 0f  (superscript ‘*’ 

indicates optimal values). The spawning constraint (5) , written as 
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3 4 3 4 5 3 4 5/ [ (1 ) (1 ) (1 )]N B s f s s f        will then be steeper in case i) than in case ii), 

which again will be steeper than that in case iii). See Figure X.1.  

 

Therefore, when taking the recruitment constraint (6) into account (again, see Figure X.1), 

we find that the size of the spawning population *B  as well as the harvestable stock *
3N will 

be highest with harvest option iii) and lowest if case i) represents the optimal policy. If 

5 5 5/p w   is substantially higher than 4 4 4/p w  , we may intuitively suspect that it is beneficial 

for the manager to invest in the salmon population by leaving the young mature population 

unexploited and harvesting the whole old adult population. Hence, case ii), where *
5 1f   and 

*
4 0f  , should maximize the sustainable yield. On the other hand, with a ‘small’ weight 

valuefertility ratio difference, either case i), with harvesting of both mature populations, or 

case iii), with harvesting of the old mature population only, should possibly represent the 

optimal solution.  

 

In case i) with *
5 1f   and *

40 1f  , the spawning constraint shadow price is determined 

through condition (7) as *
4 4 4/p w  . Combination with Eq (9) yields 

*
3 4 4 5 5 4[ (1 ) ]s p w p w s     . When inserting into Eq (10), the optimal spawning biomass is 

governed by * * *'( ) /R B s   3 4 5 5 4 4 4 41/ [ ( / )(1 ) ]ss p w p w s      . *N then follows from 

Eq. (6’), and we find the fishing mortality *
4f next through Eq (5’), * *

3 4 4 3(1 )B s f N   . If 

case ii) with *
5 1f  and *

4 0f   represents the optimal policy, the spawning constraint (5) 

reads 4 3 3B s N  . Therefore, in this case, Eq (5) together with the recruitment constraint 

(6) 3 ( )N sR B  alone determines *
3N  and *B . In case iii), where *

50 1f   and *
4 0f  , the 

spawning constraint shadow price is determined through condition (8) as *
5 5 5/p w  , 

whereas Eq (9) determines the recruitment constraint shadow price as 

*
3 5 5 4 5 4[ / (1 ) ]s p w s       . Therefore, just as in case i), the size of the spawning 

biomass is found through Eq (10), now as *
3 4 5 4'( ) 1/ [ (1 ) ]R B ss s       while *N next 

follows from Eq. (6’).  The optimal fishing mortality is again determined by the spawning 

constraint (5), in this case iii) as * *
3 4 5 4 5 3[ (1 ) (1 )]B s s f N       .  
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As indicated, changes in fishing prices may shift the optimal harvest policy from targeting 

only 2SW to targeting both stocks, and the vice versa. While price shifts have no effects 

within case ii) and case iii), we find *
4'( ) / 0R B p   within case i) as 

*
3 4 5 5 4 4 4 4'( ) 1/ [ ( / )(1 ) ]R B ss p w p w s       then describes the optimal spawning stock. 

Therefore, *
4/ 0B p   and also *

3 4/ 0N p   hold. The effects of 5p are of the opposite. 

Because the spawning constraint (5’) writes 3 4 4 3(1 )B s f N   in this case i), a higher 4p is 

satisfied with a higher *
4f . Not surprisingly, with 4 5p p we find zero stock and harvesting 

effects of price changes. There are then simply no price trade-offs present. These price effects 

found here are generally different from the standard biomass (lumped parameter) fishery 

model (e.g., Clark, 1990) where changing harvest value, in absence of stock dependent 

harvesting costs (and other possible stock values), have no effects when determining the 

maximum sustainable yield policy.  

 

X.4. Non-selective fishing pattern 

It may also be of interest to find the maximum economic yield when our optimal selective 

fishing pattern is replaced by an optimal fishing pattern with similar, or uniform, fishing 

mortalities. This scheme may hence indicate a non-selective fishing situation where ‘a fish is 

a fish’ as considered in biomass models used in the traditional bioeconomic analysis (e.g., 

Clark 1990). Our optimizing problem is then described by the goal of maximizing 

4 4 3 4 5 5 3 4 5 3[ (1 ) ]p w s f p w s s f N      subject to the spawning and recruitment constraints, 

Eqs. (5’) and (6’), respectively, and 4 5f f f  . 

 

The Lagrangian of this problem may be written as  

4 4 3 5 5 3 4 3 3[ (1 ) ] [ ( )]L p w s p w s s fN N sR B       4 3 5 3 4 3{ [ (1 ) ](1 ) }B s s s f N          

when inserting for the uniform fishing pattern. The first order necessary conditions ( again 

with 3 0N  and 0B  ) reads: 

(11) 3 4 4 5 5 4 4 5 4/ {[ (1 ) )] [( (1 ) ]} 0L f N p w p w s s               ; 0 1f  , 

and  

(12) 3 4 4 3 5 5 3 4 4 3 5 3 4/ [ (1 ) ] [ (1 ) ](1 ) 0L N p w s p w s s f s s s f                  , 

together with Eq (10). The control condition (11) must hold as equation as stock depletion 

never can be beneficial under this economic yield scenario with zero discount rent. 
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With 3 0N  , this equation may also be written as 

*
4 4 4 5 5 4 4 5[ / (1 )] [ / (1 )]p w s p w s           after some small rearangements. Therefore, 

the optimal uniform fishing pattern may be characterized as a situation where the ‘biological 

discounted’ marginal harvesting value (marginal gain) equalizes the ‘biological discounted’ 

fertility (marginal loss), evaluated by the spawning constraint shadow value. This equation 

also determines the optimal spawning constrain shadow price, * . 

 

The uniform harvesting pattern can never be more economic beneficial than the selective 

harvesting scheme as one more constraint is included in the non-selective maximization 

problem. When combining Eqs (11) and (12) we find 3 4 5 4[ (1 ) ]s s         after some 

small rearrangements. Inserted into condition (10),  the size of the spawning biomass is next 

described as *
3 4 5 4'( ) 1/ [ (1 ) ]R B ss s      . Therefore, we find exactly the same optimal 

spawning population as in the above selective harvesting case iii) and the marginal harvesting 

value (marginal gain) has no influence on the optimal uniform fishing pattern. This is stated 

as: 

Proposition 2. The marginal harvesting value (marginal gain) has no influence on the optimal 

uniform fishing pattern. 

 

Different fish prices and differences in fish weigh among 1SW and 2SW have therefore no 

influence on the optimal fishing pattern. Moreover, if prices, fish weights and fertility are 

such that case iii) represents the optimal harvesting policy under the assumption of selective 

harvesting, the size of the spawning biomass and degree of exploitation will be similar under 

uniform harvesting. 

 

X.5. Numerical illustration 

The above theoretical reasoning will now be illustrated numerically. Hansen et al. (1996) 

estimated a salmon recruitment function for a small river in Norway (the Imsa River) based 

on the Shepherd recruitment function, which includes three parameters. In our model, we 

choose a simpler approach and use the Beverton–Holt function (cf. Figure X.1). This function 

may be specified as ( )
1 /

B
R B r

B K



, with 0r   as the intrinsic growth rate, or maximum 

number of recruits per (fertility adjusted) spawning salmon, and 0K   as the stock level for 
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which density-dependent mortality equals density-independent mortality. The size of rK  

yields the maximum number of recruits and scales the system (‘size of the river’), which is 

assumed to be 40,000 (number of recruits). The value of r indicates the ‘quality’ of the river, 

and we choose 400r  (number of recruits per spawning salmon). Then, we find 100K  . 

The fertility – weight relationship is based on McGinnity et al. (2003) given as 0.874.83w   

(weight w  is here measured gramme). In the river Imsa in Norway, the same functional form 

is estimated as 0.865.10w  (personal communication senior researcher Ola Diserud 

Norwegian Institute of Natural Research, Trondheim).When normalizing the fertility 

parameter of  the SW1 to one, 4 1  , and using the McGinnity et al functional form, we find 

5 2.4  under the assumption of  fishing weights 4 2.0w   and 5 5.5w  (kg/salmon). These 

weights fit a ‘typical’ medium-sized Norwegian salmon river (NOU, 1999). The survival 

parameters are based on NOU (1999), whereas the fishing prices are related to recreational 

fishery, which, as indicated, is far more important economically than the marine fishery. The 

assumption here is that the fishing permit price in a reasonably good river is about 200 NOK 

per day (see also Olaussen and Liu 2011). Based on average catch success, this permit price 

may translate into fishing prices in the range of 100–400 (NOK/kg), or even higher. We 

assume the same price for old and young and use 4 5 150p p  (NOK/kg). We then have 

5 5 5 4 4 4/ 343.8 / 300p w p w     (NOK/fish). Table X.1 summarizes the baseline parameter 

values. 

 

 Table X.1 about here 

 

Because the weight–fertility value ratio is highest for the 2SW population, the economic yield 

maximizing fishing mortality will be highest for this old adult population (Proposition 1). 

Table X.2 (first row) demonstrates where case i) with *
5 1f   and *

4 0.31f   yields the optimal 

fishing mortality. Reducing the gain–loss ratio of the young mature subpopulation by 

lowering 4p while keeping all other parameters at their baseline values, and hence increasing 

the discrepancy between 5 5 5/p w   and 4 4 4/p w  , leads to an optimal fishing policy described 

by case ii), with no harvesting of young fish (row two). Row three indicates what happens 

when the natural survival rate of the young s  is reduced while all other parameters are kept at 

their baseline values. Such a reduction may be the result of infection through transmission of 

lice from farmed salmon. Indeed, as indicated in the introductory section, this is considered to 
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be one of the most important threats to the wild Atlantic salmon (see, e.g., Verspoor et al. 

2003). A 40% reduction yields quite dramatic effects. The spawning biomass declines 

significantly and the profit is reduced by more than 50%. Again, case i) with harvesting of the 

entire old adult population represents the optimal fishing policy.  

 

The last row in Table X.2 finally illustrates the optimal non-selective and uniform fishing 

pattern under the baseline parameter values scenario and where the marginal fishing value 

(marginal gain) plays no role (Proposition 2).We find the fishing mortality to be 0.70 and the 

fish abundance reduces somewhat to the baseline selective scheme (first row). As expected 

the profit is lower, but the reduction is quite insignificant. The changes in the size of the 

harvestable population *
3N and spawning population *B are also quite modest. However, when 

case ii) with *
5 1f   and *

4 0f  represents the optimal scheme due to increased weight–

fecundity discrepancy (row two), the differences in the spawning stock becomes more 

profound as the uniform fishing mortality still is 0.70 in the uniform case as changes in 

fishing prices play no role here. 

 

 Table X.2 about here 

 

X.6. Concluding remarks 

In this chapter, we have from a theoretical point of view, studied the maximum sustainable 

yield management of an age-structured wild Atlantic salmon (Salmo salar) population with 

two spawning and harvestable classes. Under the assumption of perfect fishing selectivity, the 

basic finding is that the weightfecundity ratio discrepancy between the harvestable classes 

determines the optimal fishing mortality and the fishing composition, and no other factors 

play a direct role. This is stated as Proposition 1. Our analysis and findings are based on the 

Atlantic salmon, but the results will also apply to, e.g., the various Pacific salmon stocks, 

which also die after spawning. 

 

The model is also studied fishing under imperfect selectivity and similar fishing mortalities in 

the harvest. We find here that the marginal fishing value (gain) has no influence on the 

optimal fishing pattern. This is stated as Proposition 2.  Only the marginal loss (fertility) 

counts, together with survival and composition of the 1SW and 2SW stock counts. The 

uniform fishing pattern yields lower profit that under the perfect selectivity pattern. In the 
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numerical illustration this loss is quite small. However, as also demonstrated, the differences 

in the size of the spawning stock and harvestable stock size may be quite significant.  
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PARAMETER DESCRIPTION VALUE 

s  Natural survival rate 

young 

0.05 

3s  Natural survival rate 

young adult 

0.5 

4s  Natural survival rate old 

adult 

0.5 

r  Intrinsic growth rate 

recruitment function 

400 (# of recruits/ 

fertility adjusted 

spawner) 

K  Scaling parameter 

recruitment function 

100 (# of spawners) 

  Migration parameter  0.5 

4w  Weight young adult 2.0 (kg/fish) 

5w  Weight old adult 5.5 (kg/fish) 

4  Fecundity parameter 

young adult 

1.0 

5  Fecundity parameter old 

adult 

2.4 

4p  Fish price young adult 150 (NOK/ kg) 

5p  Fish price old adult 150 (NOK/kg) 

Table X.1. Biological and economic baseline parameter values 
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 *
4f  *

5f  3N (#) B (#) *
4H (#) *

5H (#) * (1000 

NOK) 

Baseline values 0.31 1.00 1,420 245 110 178 179 

200% reduction 

price young adult 

( 4 50p  ) 

0.00 1.00 1,600 400 0 200 165 

40% reduction 

natural survival 

rate young 

( 0.03s  ) 

0.11 1.00 751 167 21 94 84 

Uniform fishing. 

Baseline values 

0.70 0.70 1,397 232 244 122 173 

Table X.2: Maximum economic yield 
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Figure X.1: Internal equilibrium for fixed fishing mortalities 40 1f  and 50 1f   (but 

not 4 5 1f f  ). Beverton-Holt type recruitment function 
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Eq. (6’)  
(recruitment 
constraint) 

3N  

 

 


