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Abstract 
The paper studies the economy and ecology of sheep farming at the farm level in a 
Nordic context, with a crucial distinction between the outdoors grazing season and 
the winter indoors feeding season, and where climate conditions fix the length of 
the grazing season. Two different categories of animals, ewes (adult females) and 
lambs, and one plant species are included in our ecological model. The farmer is 
assumed to maximize present-value profit where the revenue is made up income 
from meat and wool production. We find that livestock cycles may represent an 
optimal management policy. We also show that in a possible steady state with a 
constant number of animals and constant vegetation quantity, slaughtering either 
only lambs or only ewes is optimal.  
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1. Introduction 

In this paper, we show that livestock cycles may represent an optimal policy at the farm 

level in an economic sheep-vegetation trade-off model. The main content of this trade-

off is that high sheep densities yield high farm output in number of animals slaughtered. 

On the other hand, high sheep densities relative to pasture productivity cause a 

reduction in meat production per animal and thus a decrease in income per animal. We 

also show that, in a possible steady state with a constant number of animals and 

constant vegetation quantity, the harvesting decision is shaped by economic factors 

alone.  

 

We consider a Nordic sheep farming system. Within this farming system, the individual 

farmer faces several decisions. The problem analyzed here is that of utilizing a given 

farm capacity (i.e., farm size) to provide the optimal number of animals to be fed and 

kept indoors during the winter season. A corollary of this problem is to assess the effect 

that summer grazing density has on vegetation productivity and on per-animal meat 

production. While we show that livestock cycles may represent an optimal solution to 

this problem, we also find that the economic benefit of an optimal cycle policy is 

typically small compared keeping a fixed number of animals. Our stocking problem has 

similarities with the standard predator-prey renewable natural resource problem (see, 

e.g., Clark 1990) where the sheep is the predator while the vegetation is the prey. 

However, our animal – vegetation interaction is unidirectional as the vegetation quantity 

has no direct influence on the animal growth number. The link goes indirectly through 

the weight gain and hence, the value per animal.  

 

Sheep is the main livestock in animal husbandry in the Nordic countries Norway and 

Iceland, and most of the cultivated land is used for winter fodder production (58% and 

95% in Norway and Iceland, respectively; see e.g., Austrheim et al. 2008). In these 

countries, there is a crucial distinction between the outdoors grazing season (spring, 

summer and fall) and the indoors winter feeding period, which includes when the lambs 

are born in late winter to early spring, just before the grazing season starts. This 

distinction over the year cycle is also crucial in our analysis, and where the animals are 

structured in two categories, lambs and adult females (ewes). This age structured model 

is extended to take into account that the outdoors grazing conditions generally represent 
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a constraint on the animal weight growth. Climate conditions fix the length of the 

grazing season in our Nordic farming context.  

 

Although lags have been used to study the adjustment of the breeding inventory of 

sheep (see, e.g. Deese 2003), sheep technology exhibits very low delays. The gestation 

birth delay is between 145 and 153 days, and maturation for slaughter takes does not 

normally exceed 130 days (Austrheim et al. 2008). Therefore, we assume that gestation, 

birth and maturation takes place within the same period of one year. Because sheep 

farming is a managed system, animal growth is assumed density independent and hence 

linear. On the other hand, vegetation growth, as well as lamb animal weight growth, is 

nonlinear. Although the number of animal growth is linear without lags, the interaction 

between animals and vegetation introduces a second-order lag in our problem. This 

special feature suggests that stationary solutions might be cyclical. That is to say, 

sustainable management solutions can either be steady states where vegetation and 

animals remain constant through time or exhibit periodical cycles where vegetation and 

the number of animals fluctuate around constant values every second year.  Therefore, 

our animal vegetation system induces dynamics that can be similar to the cattle cycles 

induced by maturity lags (see, e.g., Rosen 1987 and Rosen et al. 1994). There are 

numerous papers, mostly in the ecology literature, some also in the range management 

literature, that examine sheep grazing. The present paper builds on Skonhoft et al. 

(2010) who analyzed the sheep – vegetation system in ecological equilibrium. In 

contrast to this, the dynamics is at the focus here. The present paper has some 

similarities with Torell et al. (1991), Huffaker and Cooper (1995) and Finnoff et al. 

(2008) which all highlight the importance of the tradeoff between numbers of grazers 

and the weight gain of the animals. 

 

The paper is organized as follows. In the next section two, we first present and discuss 

briefly the Nordic sheep farming system and describe the ecological model, the cost, 

and the revenue functions. In section three, the optimal program is formulated while the 

optimal slaughtering policy is described in section four. In section five, we proceed to 

show under what condition cycles are optimal. Section six provides a numerical 

illustration, while section seven summarizes and concludes our findings. 

 

2. The model  
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The following analysis is related to economic and ecological conditions found in 

Norway, but these also exist in Iceland. There are approximately 16,000 sheep farms in 

Norway, all family farms, with around 2.1 million grazing animals during the outdoors 

grazing season. Norwegian farms are located either close to mountain areas and other 

sparsely populated areas or along the coast. The main product is meat, which accounts 

for about 80% of the average farmer’s income. The remainder comes from wool, 

because sheep milk production is virtually nonexistent today (Nersten et al. 2003). 

Housing and indoor feeding is required throughout winter because of snow and harsh 

weather conditions. Lambs are born from late winter to early spring. During late spring 

and early summer, the animals usually graze on fenced land close to the farm. When 

weather conditions permit sheep are released into rough grazing areas in the valleys and 

mountains. The outdoors grazing season typically ends middle of September. The 

animals are then mustered and the wool is shorn. Slaughtering takes place immediately 

or after a short period of grazing on the farmland. See Figure 1.  

 

 Figure 1 about here 
 

The ecological model is just as in Skonhoft et al. (2010) and comprises an animal 

growth equation, a vegetation growth relationship, and an equation defining how the 

food intake during the outdoors grazing season influences the animal weight gain and 

slaughter weight. The number of animals influence the vegetation growth during the 

grazing season, but not the vice versa as mortality and fertility rates are assumed to be 

fixed. The population growth is thus linear; that is, more competition among the 

individuals for the available resources when the population increase is assumed not to 

cause increasing mortality rates and decreasing fecundity rate. Linear population growth 

is typical in a managed animal system (see, e.g., the cattle model of Rosen et al. 1994). 

On the other hand, more animals and higher animal density are assumed to slow down 

the individual growth rates represented by the weight of the animals. Just as in Huffaker 

and Wilen (1991) and others this mechanism works through the vegetation growth 

equation. The ecological model is formulated at a discrete time with a time resolution of 

one year, and with a seasonal subdivision between the outdoors grazing period (spring, 

summer and fall) and indoors winter feeding period (Figure 1). The sheep population is 

structured as adult females (ewes) and lambs because all male lambs are slaughtered 

since very few (or none when artificial insemination is practiced) are kept for breeding. 
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Therefore, only female adults are considered. The population is measured in fall after 

slaughtering. In the single period of one year, three events occur in the following order: 

First, recruitment and lambing, then natural mortality, and finally slaughtering. 

Therefore, when neglecting the small natural mortality during the indoors season, all 

mortality is assumed to take place during the outdoors grazing season related to various 

diseases and accidents, and in some regions also to large predators (see, e.g., 

Ekspertutvalget 2011). Natural mortality is larger for lambs than for adults. 

  

We start by formulating the animal growth equation where the number of adult females 

in year ( 1t  ), 1tX  , after the slaughter consists of the previous year’s adults and female 

lambs that have survived natural mortality during the outdoors grazing seasons and have 

not been slaughtered. This is written as 1 (1 ) (1 )y y x x
t t t t tX Y s h X s h     , where tY  is the 

number of female lambs in year t , xs  and ys  are the constant annual  natural survival 

rates of adult females and lambs, respectively, and 0 1x
th   and 0 1y

th   are the 

fractions slaughtered. With the constant annual fecundity rate b (lambs per adult 

female) and  as the fraction of female lambs recruited and no natural mortality during 

the winter, t tY bX yields the number of female lambs. Therefore, the ewe population 

growth reads: 

(1) 1 (1 ) (1 )y y x x
t t t t tX bX s h X s h     . 

 

Because the population growth equation (1) is linear for number of animals, there are 

infinite combinations of harvesting fractions that may sustain a stable (or steady state) 

population. Therefore, for a constant number of animals 1t tX X X   , we have: 

(1’) (1 ) (1 )y y x xX bXs h Xs h    , 

or simply 1 (1 ) (1 )y y x xbs h s h     when 0X  . This equation also defines the 

highest possible equilibrium harvesting rates with [1 (1 ) / ] 1y x yh s bs     for the 

lambs when 0xh  , and min{1,[(1 (1 ) / ]}y y xh bs s    for the ewes when 0yh  .  

 

We assume composite homogeneous vegetation, measured in tons of vegetation 

biomass, and given as tV  in year t . The vegetation growth function follows the Noy-

Meir (1975) model (but Noy-Meir uses continuous time) and consists of natural growth 
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minus animal consumption in which per-animal vegetation consumption increases with 

vegetation availability, but at a decreasing degree:   

(2) 1 ( ) ( )(1 )t t t t tV V f V g V b X     . 

It is assumed that the vegetation consumption, and hence the vegetation pressure, is 

governed by the number of animals in the beginning of the grazing season, (1 ) tb X and 

with similar food intake of ewes and lambs. ( )tg V is thus the per-capita consumption 

function, assumed to be increasing and strictly concave, while ( )tf V  yields the natural 

growth function, assumed to be one-peaked and strictly concave. These functions are 

scaled such that the consumption curve intersects with the natural vegetation growth 

curve from below; that is, '( ) '( )(1 )f V g V b X   holds at the unique (interior) 

equilibrium. In the numerical illustrations, we use the standard logistic natural growth 

function indicating that the vegetation quantity in principle may approach zero.  

However, overgrazing is not a serious problem, and studies of productive and species-

rich alpine environments typically show small and moderate effects of grazing on plant 

community patterns (Austrheim et al. 2008). For this reason, the outdoors grazing 

conditions are assumed not to influence sheep fertility and mortality. 

 

While the vegetation quantity has no influence on the number of animal growth, it feeds 

back on the animals by influencing the weight of the animals. The weight gain of the 

lambs during the grazing season coincides with the weight at the end of the season; that 

is, the slaughter weight (kg per animal). It is assumed proportional to per-animal 

vegetation consumption: 

(3) ( )y
t tw qg V , 

where the parameter 0 1q   translates grazing biomass into meat biomass. For the 

adults, there is generally no weight change during the grazing season (Austrheim et al. 

2008), and the adult slaughter weight is hence fixed and determined outside the model: 

(4) x x
tw w . 

 

In the above described predator – prey system, there is only harvest of the predator, the 

animals. In addition, because of the linear animal growth relationship, we find that the 

amount of vegetation has no direct influence on the number for animal growth.  

However, there is an ecological and economic link through the weight gain of the 
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animals, such that better grazing conditions, ceteris paribus, increase the per lamb 

economic value. Slaughtering has no direct effect on the vegetation. However, 

slaughtering year ( 1)t  determines the number of animals the next year t and thus 

indirectly the amount of vegetation in year ( 1)t  . This special feature has an important 

implication for the dynamic behavior of our system. Therefore, although the number of 

animal growth is linear without lags, the interaction between animals and vegetation 

introduces a second-order lag in the problem and suggests that stationary solutions of 

our model might be cyclical. That is to say, sustainable management solutions can either 

be steady states, where vegetation and animals remain constant through time or exhibit 

periodical cycles, where vegetation and the number of animals fluctuate around constant 

values every second year.  Therefore, our animal vegetation system can cause dynamics 

similar to the cattle cycles induced by maturity lags (see also introductory section). 

 

The revenue of the farmer is made up of income from meat and wool production. 

Because slaughtering takes place after natural mortality, the number of ewes and female 

lambs removed in year t are x x
t tX s h  and y y

t tbX s h , respectively. As mentioned above, 

the entire male lamb subpopulation (1 ) y
tbX s is slaughtered. With xp  as the ewes 

slaughtering price (NOK per kg) and yp as the lamb slaughtering price, both assumed to 

be constant over time and independent of the number of animals supplied at the farm 

level and net of slaughtering costs, the current meat income of the farmer reads 

[ ( 1 ) ]y y y y x x x x
t t t t t t tM p w bX s h p w X s h     .  

 

The other income component is wool sale where it is assumed that the adult animals are 

shorn two times a year, in the spring and in the autumn just before slaughtering, while 

the lambs are shorn just before slaughtering. The yearly wool income may then written 

as [ ]x y
t s t a t tW z X s X bs X     , where z  is the net (net of shearing costs) wool 

price (NOK per kg wool), s and a  are the (average) per unit adult spring and autumn 

outputs (kg per animal), respectively, and   is the per lamb output. This expression 

may be simplified to t tW z X , such that x y
s as bs       is the demographic and 

seasonally adjusted per unit wool output coefficient.  
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As already indicated, we assume a given farm capacity, and include only the indoors 

season costs as the outdoors costs are rather small. These indoors costs, including 

fodder, electricity and veterinary costs, are assumed to depend on the size of the winter 

population ( )t tC C X , with (0) 0C  , ' 0C   and '' 0C  . Therefore, when ignoring 

discounting within the year and inserting equations (3) and (4), the yearly profit of the 

farmer is described by ( , , , )y x
t t t t t t tX V h h M W C     

( ) ( 1 ) ( )y y y x x x x
t t t t t t tp qg V bX s h p w X s h z X C X        . 

 

3. The optimal program 

The farmer is assumed always to be ‘rational’ and well informed with the goal of 

maximizing present-value profit 
0

( , , , )t y x
t t t t

t

X V h h




 , subject to the animal growth 

condition (1) and the vegetation growth condition (2), where 1 / (1 )   is the 

discount factor and 0   is the (yearly) fixed discount rent. In addition, the initial 

number of animals and the initial condition of the vegetation quantity are given; that is, 

0X and 0V are known. The Lagrangian of this problem may be written as 

0

{[ ( ) ( 1 ) ( )]t y y y x x x x
t t t t t t t

t

L p qg V bX s h p w X s h z X C X   




       

1 1[ (1 ) (1 )] [ ( ) ( )(1 ) ]}y y x x
t t t t t t t t t t t tX bX s h X s h V V f V g V b X             ,  

where 0t   is the animal resource shadow price and 0t   is the vegetation resource 

shadow price. Following the Kuhn-Tucker theorem, the first order necessary conditions 

(assuming 0tX  and 0tV  ) are: 

(5) / / 0t y y y
t t t tL h h bs X  

     


 ; 0 1y
th  , 

(6) / / 0t x x x
t t t tL h h s X  

     


 ; 0 1x
th  , 

(7)

1 1 1 1 1 1 1/ / [ (1 ) (1 )] ( )(1 ) 0t y y x x
t t t t t t t tL X X bs h s h g V b     
                    

and 

(8) 1 1 1 1 1 1/ / [1 '( ) '( )(1 ) ] 0t
t t t t t t tL V V f V g V b X   
                ,  
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and where  / ( )y y y
t t th p qg V bs X   ,  / x x x x

t th p w s X   , 

1 1 1 1 1/ [ ( ) ( 1 ) '( )]y y y x x x x
t t t t tX p qg V bs h p w s h z C X              and 

1 1 1 1/ '( ) ( 1 )y y y
t t t tV p qg V bX s h         .  

 

Control condition (5), which reads ( ( ) ) 0y
t t tp qg V X 



 when inserted for / y

th  , 

states that the slaughtering of the lambs should occur at the point where the per animal 

slaughter value is below, equal to or above the cost of reduced growth in stock numbers, 

evaluated at the animal shadow price. Control condition (6) for the adults reads 

( ) 0y x
t tp w X 




when inserting for / x
th  , and is analogous. The animal stock 

(portfolio) condition (7) indicates that the number of animals should be maintained so 

that its shadow value equalizes the marginal meat value plus the contribution to further 

animal growth, evaluated at the animal shadow price and taking discounting into 

account, minus the marginal grazing cost, evaluated at the grazing shadow price, and 

taking discounting into account as well. In a similar manner, the vegetation stock 

(portfolio) condition (8) states that the vegetation shadow price should equalize the 

marginal profit gain through a higher lamb weight plus its indirect effect through the 

vegetation quantity, evaluated at the vegetation shadow price, and taking into account 

discounting.  

 

From the control conditions (5) and (6), it is evident that the per animal slaughter value 

steers the slaughtering composition. Assume first that the vegetation quantity is ‘high’ 

so that the per animal slaughter value of the lambs exceeds that of the ewes, 

( )y x x
tp qg V p w . This is the typical situation (see below) and because of the Kuhn-

Tucker conditions it indicates a higher harvesting rate of the lambs than the ewes, which 

can be satisfied in three ways: i) 1y
th  and 0 1x

th  , ii) 1y
th  and 0x

th   and iii) 

0 1y
th  and 0x

th  . On the contrary, with heavy grazing pressure and ‘low’ 

vegetation quantity, such that ( )x x y
tp w p qg V , and hence more aggressive harvesting 

of the adults, we find that the control conditions can be satisfied either as iv) 1x
th  and 

0 1y
th  , v) 1x

th  and 0y
th  , or as vi) 0 1x

th  and 0y
th  . Therefore, the lamb 

slaughtering mortality will always exceed the ewes slaughtering mortality when the 
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meat value (NOK per animal) is highest for the lambs. However, 

when ( )x x y
tp w p qg V , the ewes slaughtering mortality will be highest.  

 

4. Optimal slaughtering  

In a possible (interior) steady state where all variables are constant over time with a 

’high’ vegetation quantity and ( )y x xp qg V p w  (the time subscript is dropped when 

considering steady state) , we find that the above control conditions can be satisfied 

only as possibility iii), 0 1yh  and 0xh  , because slaughtering all the lambs as 

already indicated is not an option in a possible steady state.  A corollary of  0xh   is 

that lamb slaughtering should take place at the highest level compatible with the sheep 

population equilibrium; that is, 1 (1 ) / 1y x yh s bs    , cf. equation (1’) and section 

two. 

 

In the opposite case of a ‘low’ vegetation quantity and more valuable ewes than lambs, 

( )x x yp w p qg V , the control conditions in a possible steady state can generally be  

satisfied either as the above cases iv), v), or vi). However, while  

steady state slaughtering of all adults may be an option in principle,  it will not happen 

because of the actual demographic parameter values (numerical section seven and Table 

A1). Therefore case vi) with 1 (1 ) / 1x y xh bs s    and 0yh   (section two) will be 

the only steady state possibility when adults are more valuable than lambs. This is stated 

as: 

 

Proposition 1.  In a possible steady state where all variables are constant over time 

with a ‘high’ vegetation level, slaughtering only lambs is optimal, and this should take 

place at the highest level compatible with population equilibrium determined by sheep 

biological factors alone. In a possible steady with a ‘low’ vegetation level, slaughtering 

only adults is optimal and this should again take place at the highest level compatible 

with population equilibrium, also determined by biological factors alone. 

 

The result of only one animal harvesting category being optimal has similarities with 

the well-known finding in Reed (1980) who studied the maximum sustainable yield 

problem of a fishery. See also the extension in Skonhoft et al. (2012). On the other 
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hand, the reason for slaughtering at the highest level compatible with ecological 

equilibrium, either of lambs or adults, follow from the assumption of constant natural 

mortality rates and constant fertility rate and hence lack of any density-dependent 

effects in the animal growth equation (1). At the same time, this means that the possible 

optimal steady state harvesting rate, in contrast to what is found in most (if not all) wild 

animal (and fish) bioeconomic models, depends only on animal biological parameters 

(fertility and mortality). The working of these factors are straightforward, as higher 

fertility as well as lower mortality yield higher harvesting rates in both of the above 

cases iii) and vi).  

 

It is also possible to say something about the dynamics and transitional paths. Along the 

transition paths, we may state:  

 

Proposition 2.  Assume that ( )y x x
tp qg V p w . If 1 / x

t tX X s  , the optimal policy is 

given by 0x
th  and 1( / )

1
x

y t t
t y

X X s
h

b s
 

   
 

. If 1 / x
t tX X s  ,  1y

th   and 

1( / )
1x t t

t x

X X
h

s
  are optimal. In the opposite case of ( )x x y

tp w p qg V , if 

1 / y
t tX X b s  , the optimal policy is given by 0y

th   and 1( / )
1

y
x t t
t x

X X b s
h

s

 
  . 

Otherwise, if 1 / y
t tX X b s  , 1x

th   and 1( / )
1y t t

t y

X X
h

b s
  are optimal. 

Proof: See Appendix 1. 

 

Proposition 2 indicates that, along transitional paths, the optimal harvest policy no 

longer depends only on biological factors. The harvest policy is also contingent upon 

economic forces working through the number of animals. Furthermore, if the optimal 

long-term solution is not a steady state, we also find that the optimal harvest policy no 

longer depends only on biological factors.  

 

5. Pulse slaughtering cyclical equilibrium 

In the previous section, we studied transitional paths and some properties of a possible 

steady state where we found a stationary solution with a constant number of animals, 

vegetation level and slaughtering rates through time.  We now ask if other stationary 



 12

solutions may be present. To answer this question, we need to check if there exist 

periodic solutions.  

 

Periodic solutions generalize the concept of steady state. A periodic solution may arise 

when a steady state is unstable. The stability of our animal-vegetation system can be 

studied through the Jacobian matrix. The Jacobian matrix of the system (1) and (2) is 

given by 

1 '( ) '( )(1 ) ( )(1 )

0 (1 ) (1 )
t t t t

y y x x
t t

f V g V b X g V b
J

bs h s h
     

     
. In any steady state, we 

have 1 (1 ) (1 )y y x x
t tbs h s h     and ( ) ( )(1 ) 0t t tf V g V b X   . Therefore, the 

eigenvalues of the animal-vegetation system at steady state must verify the equation  

( )
1 '( ) '( ) ( )(1 )

( )( )

0 1

t
t t t

t

f V
f V g V g V b

g Vp J I


 


    
   


( )

(1 '( ) '( ) )(1 ) 0
( )

t
t t

t

f V
f V g V

g V
      . We find that the Jacobian of the animal-

vegetation system has a single real eigenvalue in the unit circle with value +1. This 

demonstrates that any steady state of the animal vegetation system is not stable.  

 

Another candidate for a stationary solution is a two-year periodic cycle. This type of 

solution is an orbit where ttttt XbVgVfVV )1)(()(1  , 

1111 )1)(()(   ttttt XbVgVfVV , 1 [ (1 ) (1 )]y y x x
t t t tX bs h s h X     and

1 1 1[ (1 ) (1 )]y y x x
t t t tX bs h s h X       , with tt VV 1 and tt XX 1 . In the fishing 

economics literature, with age structured models, this solution is known as pulse 

fishing, and it may become optimal because of imperfect fishing selectivity (see, e.g., 

Tahvonen 2009). We have perfect harvesting selectivity in our model, but the following 

proposition states that periodic cycles may be optimal.  

 

Proposition 3. Assume that: i) there exists a steady state with ( )y x xp qg V p w  and ii) 

the marginal maintenance cost is higher than the marginal wool income, zc  , where 

'( )C X c . When )(
)(

)('
)(' Vg

Vf

Vf
Vg  , a pulse slaughtering cycle is then always more 
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profitable than a steady state solution with constant number of animals and constant 

vegetation quantity. 

 

Proof: See Appendix 1. 

 

This proposition hinges on the assumption that the unit maintenance cost should be 

higher than the marginal wool income. This generally holds (see numerical section). In 

a periodic cyclical equilibrium, the vegetation natural growth function ( )tf V  does not 

necessary equal the sheep consumption ( )(1 )t tg V b X . Therefore, by reducing the 

number of animals in the second period, the vegetation quantity can increase in the first 

period. That is, if we reduce the number of animals in period two, the profit in period 

one can increase because the weight per lamb, and hence the value per lamb, in period 

one increases. To increase one unit of vegetation in period one, it is necessary to reduce 

the number of animals with '( ) / ( )f V f V units in period two. If the weight gain per 

lamb due to increased vegetation in period one, )(' Vg , is greater than the reduction in 

the discounted reduced number of slaughtered animals in period two, )(
)(

)('
Vg

Vf

Vf , 

then pulse slaughtering is always better than a steady state solution with a fixed number 

of animals and constant vegetation quantity through time. Therefore, Proposition 3 

demonstrates that, even when ( )y x x
tp qg V p w , the steady state may not represent the 

optimal solution. 

 

In what follows we will characterize the two-year periodic cycle equilibrium where 

11 yh , 10 2  yh and 023  xx hh .  In a two-year stationary cycle, the conditions (5) - 

(8) take the form; 1 1 1 1 1/ ( ) / 0y y yh n h h X         ; 1 1yh  , 

2 2 2 2 2/ ( ) / 0y y yh n h h X      ; 20 1yh  , 1
1 1 1 1 2 1 2/ ( ) / 0yX n h V X           ,  

1
2 2 2 2 1 2 1/ ( ) / 0yX n h V X           , 1

1 1 2 1 2/ / 0V V V         , 

1
1 2 1 2 1/ 2 / 0V V V        , 1 2 2( )yX n h X , 1 2( ) ( ) 1y yn h n h  ,

1 2 2 2 2( ) ( )(1 )V V f V g V b X     and 2 1 1 1 1( ) ( )(1 )V V f V g V b X    . The slack 

multiplier   is positive because the feasibility constraint 0 1y
th   is binding at the 

upper limit, and because of the two-year cycle; that is, we have 13 XX   , 13 VV  , 
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24 XX  , 24 VV  ,  and so forth. Note that have simplified the notation by using the 

animal growth rates along the cycle, 1( )yn h  and 2( )yn h , and by defining 

1 2 2 2 2 2 2( , ) ( ) ( )(1 )V V X V f V g V b X     and 2 1 1 1 1 1 1( , ) ( ) ( )(1 )V V X V f V g V b X    . 

 

For computing the pulse slaughtering cyclical equilibrium, we set 1 1yh  , 1( )y xn h s , 

2( ) 1 /y xn h s , 2 (1 / ) /y y y x yh bs s s bs       and 2 1
xX s X . The Lagrange 

multipliers 1 1( ) ( / )y yp qg V bs      and 2 2( )yp qg V    are then used to rewrite the 

first order condition (7) as 11 2
1 1 1

1 1

( ) ( ) 0
x

y x y
y

V s
p qg V s p qg V

X X bs

 


 
    

 
, 

1 12 2 1
2 1

2 2

( )
( ) 0

y
y

x y

p qg V V
p qg V

X s X bs

  


  
    

 
, where  

1
1 2 1 1 1 2 2( / ) / /V V V V          , and 1

2 1 1 1 2 2 2/ ( / ) /V V V V            

 

Therefore, the optimal pulse slaughtering cyclical equilibrium is given by the following 

three equations  

1
1 11 2 2 2 1

1 1 1 2 1
1 1 2 2

( )
( ) ( ) ( )

y
y x y y

x x

V p qg V V
p qg V s p qg V p qg V

X X s X s X

   


     
           

, 1 2 2 2 1( ) ( )(1 ) xV V f V g V b s X     and 2 1 1 1 1( ) ( )(1 )V V f V g V b X    . These equations 

characterize the number of animals 1X  and the vegetation quantities 1V  and 2V ,  given 

that 1 1yh  ,  2 (1/ ) /y y y x yh bs s s bs       and 2 1
xX s X .  

 

6. Numerical illustration 

6.1 Data and functional forms 

To shed further light on the above analysis, the model is illustrated numerically. As 

already indicated, the specification of the animal consumption function follows Noy-

Meir (1975), ( ) / ( )t t tg V kV V m  , where 0k   is the maximum vegetation biomass 

intake per animal and 0m   determines the shape of the consumption pattern. Natural 

vegetation growth is described by the standard logistic function ( ) (1 / )t t tf V rV V Q  , 

with 0r   as the maximum specific vegetation growth rate (vegetation productivity) 

and 0Q   as the carrying capacity. As mentioned (section two), the vegetation quantity 

may therefore in principle approach zero. However, as also mentioned, overgrazing is 
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not a serious problem in our species-rich alpine environments. The animal cost function 

is specified as linear, ( )t tC X cX , with 0c  as the fixed marginal cost (see also 

above).  

 

The baseline parameter values, in which sheep biological data and economic values are 

related to Norwegian conditions, are shown in Table A1 (Appendix 2). The sheep 

biological data are based on a large set of observations, while the vegetation parameter 

values, at least to some extent, are based on qualified guesswork. The size of the farm is 

scaled by the vegetation carrying capacity Q . With 500Q   (ton of vegetation 

biomass), we find / 2 250msyV Q  . Accordingly, for the baseline parameter values 

(Table A1), the number of animals (and winter population) in a possible 

equilibrium ( ) ( )(1 )f V g V b X  , or (1 / ) [ / ( )](1 )rV V Q kV V m b X     compatible 

with this msyV  value, is ( 2 ) / 4 (1 ) 108X r Q m k b     (ewes). This corresponds to a 

farm somewhat above the Norwegian average size. For this vegetation quantity, the 

lamb weight is ( )y msyw qg V  21.8 (kg/animal), and the per lamb meat value 

( ) 50 21.8 1,091y msyp qg V    (NOK/animal). The ewe slaughter value is fixed as 

35 30 1,050x xp w    (NOK/animal) (Table A1). A higher slaughter value of the lambs 

than that of the ewes is the typical situation according to market data. For our baseline 

parameter values, the marginal maintenance cost ( 650c  NOK/animal) exceeds the per 

animal wool income ( 35 5 175z      NOK/animal).  

 

We find the optimal management policy for the baseline parameter values. Effects of 

changes in the discount rent and costs are also studied. We start with the stationary 

solutions. 

 

6.2 Results stationary solutions 

Table 1 demonstrates the three stationary solutions; that is, the two steady states and the 

optimal pulse harvesting. In the baseline case, just as in reality, the value per animal is 

higher for the lambs than the ewes, and hence the steady state profit is higher when only 

lambs are slaughtered (Proposition 1). However, the difference is quite modest, just 

about 4-5 % (106.26 vs.101.95). The harvesting rates are 0.928 and 0.680, respectively, 

and the stocking rate is highest and the vegetation quantity lowest when only ewes are 
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slaughtered. With only lamb slaughtering, we find the vegetation quantity to be above 

that of msyV ( 268 250msyV V   ).  On the other hand, with only ewes slaughtering, 

the vegetation quantity is substantial lower, with 221V  . 

 

 Table 1 about here 

 

The last two columns in Table 1 demonstrate that pulse harvesting with only lamb 

slaughtering represents the most beneficial stationary harvesting strategy. The two-year 

discounted profit exceeds the steady state with only lambs slaughtered (Proposition 3), 

but note  that the economic benefit of a stationary cycle policy is low.The lamb 

harvesting rates in the two consecutive years are 1.000 and 0.8526, while the number of 

animals is 107 and 101, respectively. Note also that stationary cycles in period one 

sustains a higher level of vegetation as well as higher lamb weight than in the steady 

state solution. That is, the cyclical solution can be understood as optimal fallows for 

increasing lamb weight and vegetation level in periods with high slaughtering rates. 

Pulse fishing plays the same role in fisheries models (see Da Rocha et al. 2011).   

 

In our farm model, there are no stock dependent harvesting costs. The costs are 

maintenance costs related to the number of animals kept during the winter indoors 

season. Therefore, we find that the advantage of cyclical solutions do not rely on the 

size of these costs. See Table 2. As Proposition 3 states, even for high maintenance 

costs, pulse cycle periodic harvesting policy is always better than the steady state 

solution with a constant number of lambs slaughtered every year. However, again we 

find that the economic gain is small. As expected, we also find that higher costs mean 

that it is beneficial to reduce the stocking rate and reduce the grazing pressure. 

 

 Table 2 about here 

 

Next, in Table 3, we show how the two-year discounted profit changes with the size of 

the discount rate. Regardless of the size of the discount rate, pulse cycle periodic 

harvesting policy is always better than the steady states. Moreover, we also find that the 

number of animals increases and the vegetation quantity decreases in the steady state 

solution with only lamb slaughtering with a more myopic farm policy and a higher 

discount rent. This result highlights the different role that each state variable plays in an 
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animal vegetation system. The animals are predators that harvest vegetation, the prey. 

That is, in such a system, vegetation is the natural resource, while the animals represent 

the capital, and, at a higher discount rent, it is beneficial for the farmer to invest in the 

animal capital and not ‘in the bank’. The same occurs in the steady state solution with 

only ewes slaughtering as well as with pulse slaughtering. 

 

 Table 3 about here 

 

6.3 Dynamic transition 

Above it was shown that a pulse cyclical periodic solution was beneficial compared to 

the ewes-only steady state harvesting scheme with a low vegetation quantity when the 

discount rate was high and 0.10  . However, we may find that selecting the low 

vegetation steady state may represent the optimal policy by depleting the initial level of 

vegetation. To show this, we compute the transitional dynamics using dynamic 

programming. To find the optimal control rule associated with any possible state, we 

use Proposition 2 to write the controls as functions of the state variables, and we solve 

the Bellman equation ),(),|,(max),( 1111
, 11

 


tttttt
XV

tt XVXVXVXV
tt

 . 

 

Given the optimal policies, transitional dynamics are computed for three different initial 

conditions; i) the ‘high’ vegetation steady state (left hand side panels Figures 2 and 3), 

ii) the ‘low’ vegetation steady state (middle panels) , and finally iii) the first year of the 

optimal pulse cycle (right hand side panels). In each panel, where Figure 4 indicates the 

stock values and Figure 5 the harvesting rates, the dynamic transitions are shown for 

three different values of the discount rent; solid line for 0.03  baseline value), solid 

line with a cross mark for 0.07  and dashed line for 100.δ  . Finally, in Figure 4’s 

bottom panels, demonstrating the optimal vegetation paths, we have also included a 

solid line indicating the vegetation level for which the value of slaughtering lambs 

equalizes the value of ewes; that is, ( )y x xp qg V p w and hence 234V  . Therefore, 

slaughtering only lambs (ewes) is optimal if the vegetation quantity is above (below) 

this level. 

 

 Figure 2 about here 
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For the baseline value of the discount rate and 0.03  , the stationary solution selected 

is the cyclical pulse solution irrespective of the initial conditions.  In Figure 4, the lower 

panels, the three transitional dynamics lead to a vegetation level above that of 234V  . 

Therefore, irrespective of the initial conditions, it is optimal to reach the periodic cycle 

stationary solution, and depleting the initial level of vegetation is not optimal. 

 

On the other hand, when the discount rate is high and 0.10  , the optimal stationary 

solution selected is always the steady state solution with slaughtering of only ewes and 

hence a low vegetation level. Therefore, in Figure 4 (bottom panels), the three 

transitional dynamics lead to a vegetation level of about 190, well below the solid line 

indicating the vegetation level of similar slaughter values of lambs and ewes ( 234V  ). 

The steady state number of animals becomes 120X  and the slaughter rate 0.68xh  . 

The long run solution selected is the steady state with the lowest discounted profit 

(again, see Table 3); the reason is that depleting the initial high vegetation stock more 

than outweighs future steady state losses. This result is similar to the effect of the 

discount rate in a single stock model. For a high interest rate, depletion along the 

transitional path compensates for the future stationary losses. 

 

 Figure 3 about here 

 

Finally, when the discount rate is 0.07  , we find that the optimal stationary solution 

depends on the initial conditions. In Figure 2, lower panels, two of the three transitional 

dynamics paths go to a vegetation level above the 234V  line, and one goes below. 

Therefore, if we start with a low level of vegetation as indicated by the stationary 

solution of only ewes slaughtering (middle panels), depletion of the vegetation quantity 

is optimal. In the other two cases, however, the stationary solution selected is the 

cyclical pulse solution with only lamb slaughtering and yh oscillating between 1.00 and 

0.84. See Figure 3. Table 4 summarizes the above results. 

 

 Table 4 about here 

 

7. Concluding Remarks 
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This paper has analyzed the economics of sheep farming in a two-stage model of lambs 

and adult females (ewes). The analysis is at the farm level in a Nordic context with a 

crucial distinction between the outdoor grazing season and the winter indoor feeding 

season. A Noy-Meir (1975) type model describes the animal – vegetation interaction 

during grazing season where the vegetation growth is density dependent, while the 

animal growth is linear and hence does not depend on the vegetation quantity.. The 

vegetation quantity and food intake during the outdoors grazing season influences the 

weight gain and slaughter weight of the lambs. The farmer is assumed to be rational and 

well informed, and aims to find the animal slaughter composition maximizing the 

present- value profit comprising meat (flow) value and wool (stock) value.  

 

The paper provides three propositions about the optimal slaughter decision. In a 

possible steady state, Proposition 1 says that the harvesting decision is shaped by 

economic factors alone. With a ‘high’ vegetation level and more valuable lambs than 

adults, slaughtering only lambs is optimal. The slaughtering should take place at the 

highest level compatible with population equilibrium determined by only biological 

factors (survival rates and fertility).  In a possible steady state with a ‘low’ vegetation 

level, slaughtering only ewes is optimal, and this should again take place at the highest 

level compatible with population equilibrium, also determined by biological factors 

alone. We are also able to say something about the dynamics and transitional paths, 

conveyed by Proposition 2, indicating that, along the transitional paths, the optimal 

harvest policy no longer depends only on biological factors. The harvest policy is also 

contingent upon economic factors working through the number of animals. 

 

The last result of our analysis is stated as Proposition 3, and says that pulse (cyclical) 

slaughtering with only lamb slaughtering may be optimal. Our mechanism for cyclical 

harvesting is different from what is found in most of the existing literature. See, e.g., 

Wirl (1995), and Tahvonen (2009) who demonstrates pulse harvesting under imperfect 

harvesting selectivity. Pulse fishing has some advantages in live product fisheries (Da 

Rocha, Gutierrez and Antelo 2012a, b), and it has been applied in timber management 

under spatial rotation. Nevertheless, sheep farmers do not consider periodic slaughtering 

as a feasible management tool. In our numerical analysis, we also find that the economic 

advantage of periodic slaughtering is small compared to stationary slaughtering.  
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Appendix 1 
Proof of Proposition 2  
Assume that it exists an optimal solution where 1 /t tX X is greater than xs . Given that 

y
th must be less than one when 1 /t tX X is greater than xs , the only possible option is 

lamb slaughtering; that is, 0x
th  and 11 [( / ) ] /y x y

t t th X X s b s    .We prove by 

contradiction that this is the optimal policy. Assume that exists an optimal solution 
where 1 /t tX X is greater than xs and x

th is strictly positive, and let  

( , , , ) ( ) ( 1 ) ( )y x y y y x x x x
t t t t t t t t t t tX V h h p qg V bX s h p w X s h z X C X         be the optimal 

current profit associated to this solution. Now consider a new sequence of controls with 

 0
x

th  , and 
xy

y x
t t ty

s
h h h

bs 
  that sustain the same sequence of number of 

animals tX and therefore also the same vegetation quantity tV (cf. Eq. 1). We now find 

that  ( , , , ) ( , , , ) ( ( ) )
y x

y x y x x x x
t tt t t t t t t t tX V h h X V h h p qg V p w X s h      is positive when  

( )y x x
tp qg V p w , and we hence get a contradiction. If the optimal solution is such that 

1 /t tX X is lower than xs and y
th  is lower than 1, we can increase y

th  by reducing x
th  in a 
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quantity equal to
y

y
tx

bs
h

s


for keeping the same number of animals. Therefore, consider a 

new sequence of controls where  
x

ttx
t s

XX
h

)/(
1 1


and  1

y

th  . We find a contradiction 

also because  ( , , , ) ( , , , ) ( ( ) ) (1 ) 0
y x

y x y x x y y
t tt t t t t t t t tX V h h X V h h p qg V p w X bs h      . 

 
 
 
Proof of Proposition 3 
We show that, given a steady state sequence, we can always construct a stationary cycle 
that improves the net present profits. Assume that the optimal solution is a steady 
state 1t tX X X    and 1t tV V V   with 0xh   and 1 (1 ) /y x yh s bs   . First, we 

build a feasible stationary cycle, by modifying the number of animals in the second 
year, 2 (1 )X X  and keeping constant the number of animals in the first 

year, 1X X . Changes in the number of animal imply changes in: i) the slaughtering 

rates, and ii) the sequence of vegetation, for guarantying feasibility. Formally, a 

stationary cycle with 2 (1 )X X   implies (from proposition 1) 1
ˆ y y

y
h h

bs




  , 

2
ˆ

(1 )
y y

y
h h

bs


 

 


. Second, the new vegetation sequence, associated with 

2 (1 )X X  , satisfies the feasibility conditions 

   
2 1 1 1( ) (1 ) ( )V V f V b g V X    and    

1 2 2 1( ) (1 ) ( )(1 )V V f V b g V X     . 
 
Now, we can compute the difference between profits associated with the stationary 
cycle and the steady state sequences in the first year of the stationary cycle 

    1 1 11 1( , , ) ( , , ) ( ) ( ) ( 1 ) ( )
y

y y y y
tX V h X V h p q bs g V g V h g V X              

and in the second year 
    2 2 2 22 2( , , ) ( , , ) (1 ) ( ) ( ) ( 1 ) ( )

y
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.z X c X   We can compute the difference in the net present profits, 1 2   as 
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are calculated using the relationship between vegetation in the odd and even periods 

given by      
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VfVg  steady states are not optimal.   

 
Appendix 2  
Data and parameter values 
Aunsmo et al. (1998) and Nersten et al. (2003) provide economic data. Prices and costs 
are in 2003 values. The sheep biological baseline parameter values are based on 
Mysterud et al. (2002) and Aunsmo et al. (1998). As a background for the vegetation 
growth values, there are some studies indicating the amount of fodder production. 
However, alpine pastures are heterogeneous, and estimations of fodder production from 
two alpine ranges in Norway (Setesdalsheiene and Hardangervidda) show large 
variations. Vegetation types with a limited biomass production dominate. There are also 
meadows that produce a large amount of fodder of very high quality. However, the 
meadows cover only a small proportion of these areas (Austrheim et al. 2008a). The 
vegetation consumption values build on detailed animal food intake data, but are also 
calibrated based on weight and price data. This is also true for the vegetation growth 
values. For details and calculations see Skonhoft et al. (2010). Based on these 
calculations, the vegetation saturation parameter is fixed as 0.50k   (ton of vegetation 
biomass/animal), the intrinsic vegetation productivity parameter value is assumed to be 

0.5r  while the animal consumption shape parameter value set to 300m   (ton of 
vegetation biomass). The farm size is scaled through the vegetation carrying capacity 
given as 500Q   (ton) (see numerical section). Based on the ewe weight of 

30xw  (kg/animal) and the fact that the ewe weight should be above that of the lamb 
weight for all values of the vegetation quantity, the value of the biomass translation 
parameter is assumed to be 96q   (kg meat/ton vegetation biomass). Table A1 gives 
the baseline parameter values used in the numerical illustrations. 
 

Table A1 about here 
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Tables and Figures 
 

 
Figure 1: Seasonal subdivision in the Nordic sheep farming system. 
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Figure 2. Optimal animal and vegetation paths for three different initial conditions, and three different discount rates. Steady state (SS) with 0yh   (left), steady 

state (SS) with 0xh   (center) and pulse (right). Initial conditions as in the stationary solutions for baseline discount rate 0.03  (Table 1) 
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Figure 3. Optimal slaughtering paths for three different initial conditions, and three different discount rates. Steady state (SS) with 0yh   (left), steady state (SS) 

with 0xh   (center) and pulse (right). Initial conditions as in the stationary solutions for baseline discount rate 0.03  (Table 1)



       Table 1: Stationary solutions. Baseline parameter values 

 Steady state. Only 
lamb slaughtering 

Steady state. Only 
ewe slaughtering 

Pulse 
harvesting 
year 1 

Pulse 
harvesting 
year 2 

Number of animals 
X  

104 115 107 101 

Vegetation quantity 
(ton) V  

268 221 269 267 

Lamb weight (kg) yw  22.65 20.37 22.69 22.61 

Slaughtering fraction 

lambs yh  

0.928 0 1.000 0.853 

Slaughtering fraction 

ewes xh  

0 0.680 0 0 

Animal growth rate 0 0 0.950 1.053 
Current profit    
(1,000 NOK) 

106.26 101.95 115.32 97.23 

2-period discounted 
profit (1,000 NOK) 

209.43 200.94 - 209.71 

 

  
 
 
 

Table 2: Optimal stationary solutions. Effects of changing  
costs. All other parameter values as baseline 

 
 

2/650c
Baseline 

650c
 

650 2c    

                                                        Steady state with only lambs slaughtering
Number of Animals X  110 104 83 

Vegetation quantity (ton )V  246 268 334 
2-period discounted profit 
(1,000 NOK) 

278.49 209.43  85.61 

                                                       Steady state with only ewes slaughtering 
Number of Animals X  119 115 91 

Vegetation quantity (ton)V  196 221 311 
2-period discounted profit 
(1,000 NOK) 

276.33 200.94  63.67 

                                                                           Pulse  
Number of Animals X (year 1) 112 107 85 

Vegetation  (ton) V (year 1) 247 269 335 

Number of Animals X (year 2) 107 101 81 

Vegetation  (ton) V (year 2) 245 267 333 
2-period discounted profit 
(1,000 NOK) 

278.80 209.71  85.88 
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Table 3: Optimal stationary solutions. Effects of changing  
discount rate. All other parameter values as baseline 

 
Baseline 

0.03 


0.07   


100.δ   

                                                   Steady state with only lamb slaughtering
Number of Animals X  104 107 109 

Vegetation quantity (ton )V  268 257 249 
2-period discounted profit 
(1,000 NOK) 

209.43 204.13 199.88 

                                                                 Steady state with ewes 
Number of Animals X  115 118 120 

Vegetation quantity (ton)V  221 203 190 
2-period discounted profit 
(1,000 NOK) 

200.94 194.84 189.52 

                                                        Pulse with only lamb slaughtering 
Number of Animals X (year 1) 107 110 112 

Vegetation  (ton) V (year 1) 269 258 250 

Number of Animals X (year 2) 101 104 106 

Vegetation  (ton) V (year 2) 267 256  248 
2-period discounted profit 
(1,000 NOK) 

209.71 204.75 200.73 

 
 
 
 
 

Table 4:  Optimal stationary solution selected in the long run.  
Number of animals and vegetation quantity 

Discount rent 0.03   0.07   0.10   
Scenario1: Initial condition Steady state with lamb slaughtering
Animal period 1 107 110 120 
Animal period 2 101 104 120 
Vegetation period 1 269 258 190 
Vegetation period 2 267 256 190 
 
Scenario 2: Initial conditions Steady State with ewe slaughtering 
Animal period 1 107 118 120 
Animal period 2 101 118 120 
Vegetation period 1 269 203 190 
Vegetation period 2 267 203 190 
 
Scenario 3: Initial conditions Pulse cyclical equilibrium 
Animal period 1 107 110 120 
Animal period 2 101 104 120 
Vegetation period 1 269 258 190 
Vegetation period 2 267 256 190 
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Table A1: Baseline ecological and economic parameter values. 
Parameter Parameter description Value 

ys  -Natural survival fraction lambs 0.91 

xs  -Natural survival fraction ewes 0.95 

b  
-Fertility rate 1.53 (lamb/ewe) 

  - Proportion female lambs 0.50 
xw  -Adult (ewe) slaughter weight 30 (kg/animal) 

  -Wool output coefficient  5 (kg/animal) 

z  -Wool price 35 (NOK/kg) 
q  -Biomass translation parameter 96 (kg meat/ 

ton vegetation biomass) 
r  -Intrinsic vegetation growth rate  

(pasture productivity) 
0.50 

Q  
-Vegetation carrying capacity 500 (ton of vegetation biomass) 

k  -Vegetation saturation parameter 0.50 (ton of vegetation biomass/ 
animal) 

m  -Shape animal consumption parameter 300 (ton of vegetation biomass) 
xp  -Adult (ewe) slaughter price 35 (NOK/kg) 

yp  -Lamb slaughter price 50 (NOK/kg) 

c  -Marginal cost 650 (NOK/animal) 
  -Discount rent 0.03 

Table note: Exchange rate: 1 Euro = 7.90 NOK (Summer 2011). 
 

 
 


