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ABSTRACT. Complete information is usually assumed in
harvesting models of marine and terrestrial resources. In re-
ality, however, complete information never exists. Fish and
wildlife populations often fluctuate unpredictably in numbers,
and measurement problems are frequent. In this paper, we an-
alyze a time-discrete fishery model that distinguishes between
uncertain natural growth and measurement error and in which
exploitation takes place in an unregulated manner. Depending
on the parameterization of the model and at which point of
time uncertainty is resolved, it is shown that expected har-
vest under ecological uncertainty may be below or above that
of the benchmark model with no uncertainty. On the other
hand, when stock measurement is uncertain, expected har-
vest never exceeds the benchmark level. We also demonstrate
that the harvesting profit, or rent, under uncertainty may be
above that of the benchmark situation of complete informa-
tion. In other words, less information may be beneficial for the
fishermen.

KEY WORDS: Fishing, uncertainty, unregulated ex-
ploitation, profitability.

1. Introduction. Complete information is usually assumed in
harvesting models of marine and terrestrial resources. In reality, how-
ever, complete information never exists. Fish and wildlife popula-
tions frequently fluctuate unpredictably in numbers (e.g., Lande et al.
[2003]), and particularly in fisheries, severe measurement problems are
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present (e.g., Gulland [1986], Hilborn and Walters [1992]). In addition,
future prices and costs are uncertain (see, e.g., Andersen [1982]). In
this paper, however, economic uncertainty is left aside and only eco-
logical uncertainty' and measurement problems are considered. In his
fundamental paper, Reed [1979] modeled a stochastic biological process
in which environmental shocks occur between previous fishing period
and current recruitment. He considered a regulator that harvests se-
quentially and aims to maximize expected present-value profit. When
assuming that harvest is chosen after uncertainty has been resolved,
he found a “bang-bang” constant escapement harvest to be optimal.
In contrast to Reed [1979], Clark and Kirkwood [1986] assumed that
the regulator chooses a harvest policy before uncertainty is resolved. In
this context, they showed that the optimal solution is a nonconstant
escapement policy that may be above or below that of Reed’s model.

Both Reed [1979] and Clark and Kirkwood [1986] assumed that the
harvesters always take the quota set by the regulator and hence ignored
any possible information asymmetry between regulator and harvesters.
Weitzman [2002], on the other hand, assumed that the regulator makes
a decision and sets the quota before uncertainty is resolved, whereas
the fishermen choose their harvesting effort after the resource stock has
been observed. Therefore, ecological information asymmetry is present
between the regulator and the harvesters. In this setting, Weitzman an-
alyzed the performance of a landing tax versus a quota and found the
landing tax to be most efficient. However, as the individual harvesters
know more than the regulator and adjust their effort and harvest ac-
cordingly, this result is not a big surprise. The efficiency of landing fees
versus quota control was further examined by Hannesson and Kennedy
[2005].

As far as we can see, there is really no distinction between uncer-
tainty in the biological processes, that is, ecological uncertainty and
stock error measurement, in these papers. Recruitment occurs after
the end of the fishing period, and the stochastic process is connected
to the realization of the relationship between recruitment and escape-
ment (i.e., fish remaining alive at the end of the fishing period). The
stochastic process is modeled by multiplying the recruitment function,
assumed to be known exactly, by a random factor. However, whereas
Reed and Weitzman interpreted the stochastic process as ecological
uncertainty, Clark and Kirkwood assumed that it might reflect stock
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measurement errors as well. Hence, although their interpretations dif-
fer, the papers are similar in the technical modeling of the stochas-
tic process. Sethi et al. [2005] extended Reed’s and Clark and Kirk-
wood’s models by distinguishing between ecological uncertainty and
measurement error within a social planner framework.? They mod-
elled both stochastic processes as multiplicative to the escapement—
recruitment function and found that uncertainty had a significant op-
timal escapement impact only when measurement error is high. The
present paper also distinguishes between ecological uncertainty and
measurement error. In contrast to the social planner model of Sethi et
al., however, we analyze the effects of uncertainty within the frame-
work of an unregulated fishery in which it is allowed for a positive
rent.

In an unregulated fishery, the so-called open-access fishery has for
many years served as the benchmark (e.g., Gordon [1954], Homans
and Wilen [1997]). Within such an exploitation regime, uncertainty
has no rent effect as profitability, at least in the long term, as per defi-
nition, equalizes zero. However, in an unregulated fishery allowing for a
positive rent, introduction of uncertainty generally affects profitability
and the catch of the fishermen. In what follows, such an unregulated
fishery is examined. Contextually, the sort of resource management we
have in mind is a local in-shore fishery in a typical developing coun-
try setting. It may fit to the FAO (]2007], pp. 7-8) definition of a
small-scale fishery “broadly characterized as a dynamic sector employ-
ing labour intensive harvesting...to exploit marine and inland water
fishery resources. . .(where the). . .activities. . .are often targeted on sup-
plying fish and fishery products to local and domestic markets, and for
subsistence consumption....” In such a small-scaled fishery, it is as-
sumed that the number of fishermen (or vessels) flowing into (and out
of) the fishery caused by changing profitability opportunities is small,
or even negligible. This may be due to a possible license system that
restricts the entrance of new fishermen. We abstract from any fur-
ther regulations, or enforcement, which typically is the case in such
small-scale fisheries (see, e.g., Pomroy et al. [2009] with examples from
Vietnam). The exploitation scheme may vary because of circumstances
(e.g., Bromley [1991] for a general discussion), but here we focus on a
situation in which the fishermen lack any long-term view on the re-
source utilization. Within this framework, it is assumed that they aim
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to do it as “as good as possible,” approximated by short term, or my-
opic, profit maximization. The exploitation hence takes place within
the management setting described by, among others, Baland and Plat-
teau [1996] as an unregulated local common property regime. It fits to
the notion of a local common because the number of exploiters is fixed,
and it fits to the notion of unregulated exploitation because it lacks any
long-term view on the resource utilization. It may also be quite similar
to Ostrom’s [1990] notion of a small-scale local common-pool resource
but in which economic, cultural, and economic changes, in short “mod-
ernization,” may have changed the way in which the fishery resources
are exploited. Unregulated resource management schemes such as the
present one are studied in numerous papers (see, e.g., Brander and
Taylor [1998]).

Within this institutional setting, we analyze how ecological uncer-
tainty and measurement error affect harvest, stock growth, and prof-
itability. We distinguish between the situations in which harvest takes
place after the fishermen have observed the realization of the uncer-
tainty and the situations in which harvest takes place before uncer-
tainty is revealed. We deviate from the abovementioned escapement—
recruitment models by assuming that harvest occurs after natural
growth. By doing so, we allow for a conceptual distinction between
ecological uncertainty and measurement error. A simple biomass model
in which the individual harvesters employ a generalized Schaefer har-
vesting function is considered, and it is demonstrated that the effects
of the two types of uncertainty depend crucially on the harvest scale
properties.

The paper is structured as follows. In the next section, as a bench-
mark, the harvesting model is formulated without uncertainty. In Sec-
tion 3, ecological uncertainty is introduced, and in Section 4, mea-
surement errors are studied. Although these sections deal with stock
growth and harvesting only, the economic consequences are analyzed
in Section 5. Section 6 gives some numerical illustrations, and Section
7 summarizes the main findings.

2. Benchmark model. As a benchmark, just to fix ideas, we con-
sider the simple situation without uncertainty. The biomass (“a fish is
a fish”) is assumed to be exploited instantaneously and simultaneously
by n identical harvesters and in situations in which n is fixed (see
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above).? The population growth may hence be written as
(1) X1 = Xi + F(Xy) — nh,

where X; is the stock at time ¢, h; is the individual harvest, and F'(X;)
is the natural growth function, assumed to be density-dependent in a
standard manner (see below).

Harvest is governed by a generalized Schaefer function. When as-
suming that harvest takes place after natural growth (see above), the
individual harvest function reads h; = qef (X; + F(X;))?, with e;
as effort and ¢ (“catchability” coefficient), a (input elasticity), and 8
(stock elasticity) as parameters. The case « = 3 = 1 is frequently used
in the literature and coincides with the standard Schaefer harvesting
function. However, for many fish stocks, § may be substantial lower
than 1 (“schooling stocks”), and there are good reasons to believe that
the return on effort is decreasing so that « also is below 1. In what
follows, these elasticities are constrained as 0 < a < land 0 < g < 1.
For given and known harvest price and effort cost, p and ¢ respectively,
the current individual profit is m; = pge? (X; + F(X;))” — ce;. In
this unregulated fishery, exploitation takes place in a myopic manner
(Section 1); that is, individual profit is maximized while neglecting the
stock effect (zero shadow price). Maximization for a given stock X; >
0 yields ef = {(apq/c)(X; + F(X;))?}/(1=2) When inserted into the
harvest function, we find the (myopic) optimal harvest locus as hf =
q(apg/c)*/ =) (X, + F(X,))?/ (=) 5.6

In what follows, a distinction is made between the constant return to
scale (c.r.s.) case (a + ) = 1 and the increasing return to scale (i.r.s.)
case (a + ) > 1.7 To work with tractable analytical expressions, the
c.r.s. case is considered when o = 8 = 0.5, and the i.r.s. case is consid-
ered when o = 0.5 and 8 = 1 (but see Section 7 and the Appendix).
In the c.r.s case, we obtain the linear individual harvesting locus:

(2) hi = a(X; + F(Xy)),

where a = pqg?/2c. When next inserted into equation (1), the stock
growth becomes

(3) Xt+1 :Xf, +F(Xt) —’I’LCL(Xt —|—F(Xt))
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This is a first-order nonlinear difference equation in which the dy-
namics generally depend on the parameterization of the model. How-
ever, typically, there will be no oscillations, and equilibrium will be ap-
proached monotonically.® The steady-state stock X* is found through
F(X*) = na(X* + F(X%)), or F(X*) = (na/(1 — na))X*. Natu-
ral growth is given by the standard logistic function F(X;) = rX;(1
— X;/K), with r as the intrinsic growth rate and K as the carrying
capacity. Therefore, the steady-state X* > 0 will be unique.

The irs. case (a = 0.5, 3 = 1) yields h} = a(X; + F(X;))?. The
population dynamics change accordingly compared with the c.r.s. case.
So does the steady-state stock, which is now found through F(X*) =
na(X* + F(X*))2. If r < 1 (which holds for most harvestable species),
it can be shown that the right-hand side of this equilibrium condition
slopes upward in the interval [0, K]. The steady-state X* > 0 will then
again be unique.

3. Ecological uncertainty. We now introduce uncertainty and
start by analyzing a situation with uncertain recruitment, or natural
growth. Lande et al. [2003] discusses the biological foundation of this
type of uncertainty, and in which a crucial distinction goes between
environmental uncertainty and population uncertainty. In our simple
biomass framework, however, both these types are captured by the ran-
dom variable 6;, assumed to be independent and identically distributed
(i.i.d.) over time, with unit mean, E(6;) = 1, and finite support, 0 <
Olow < 0; < Onign < 0o. Therefore, the stock growth now writes:

(4) Xt+1 :Xt —&—OtF(Xt)—nht

As already indicated, two situations are studied. First, it is assumed
that natural growth is known before the harvest decision. Second, har-
vesting takes place before natural growth uncertainty is resolved. In
both cases, it is supposed that the stock level at the beginning of pe-
riod ¢ can be observed for sure; that is, all harvesters know X,.”

3.1. Uncertainty resolved before harvesting. Assume that
natural growth is known before the harvest decision, which may
be seen as an analog to the Reed [1979] model. When 6, is
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known and hence is deterministic to the harvesters, the individ-
ual harvester aims to maximize m; = pged(X; + 0,F(X;))? —
ce;. This yields & = {apq(X; + 6, F(X,))? /c}'/(1=)  which translates
into the (myopic) optimal harvest locus hy = q(apg/c)®/ =) (X, +
0, F(X,))?/(1=2) Therefore, not surprisingly, harvest is “high” in years
with “good” natural growth conditions and above that of the harvest
in the benchmark model and vice versa. In the c.r.s. case (a = 3 =
0.5) we find hy = a(X; + 6, F(X})), and expected harvest is then just
as in the benchmark model:

(5) Elh] = a(X; + F(Xy)).

In the irs. case (¢ = 0.5, 8 = 1), individual har-
vest becomes h; =a(X;+0,F(X;))? and, therefore, E[h]=
a{ X} +2X,F(X;) + E[0?]F(X;)?*}. Because E[#?] = Var[d,] + 1,
expected harvest, for a given stock level, will be above that of the
benchmark model. Moreover, the difference increases with more
growth variation. This is stated as

Result 1. When harvesting takes place after natural growth uncer-
tainty has been resolved, expected harvest is just as in the benchmark
model when c.r.s. and above that in the benchmark model when i.r.s.

The reason why there is no difference compared with the benchmark
model when c.r.s. is that the stochastic term is linearly included in
the optimal harvest function. On the other hand, in the i.r.s. case, the
stochastic term is included in a convex manner. Therefore, Result 1
is simply because of Jensen’s inequality, irrespective of the fact that
there is no uncertainty involved in the harvest decision.'®

When inserting h; into equation (4) in the c.r.s. case, the stock dy-
namics become

(6) Xt+1 = Xt + QtF(Xt) - ’I’L(L(Xt + HtF(Xt))

The notion of steady state has now no obvious meaning, but the
expected steady-state FE[X;;1 — Xi] = 0 yields the biomass that
the stock in the long-term will fluctuate around. Expected natural
growth equals then expected harvest, that is, F(X) = na(X + F(X)),
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or F(X) = [na/(1 — na)]X, which yields the same stock size as in the
benchmark model, X = X*. Therefore, a corollary of Result 1 is that
expected steady state will be the same as in the benchmark model
when c.r.s. On the other hand, it is easily recognized that the expected
steady-state stock will differ from the benchmark model in the i.r.s.

case.“

3.2. Harvesting before uncertainty is resolved. We next con-
sider the situation in which harvest takes place before natural growth
uncertainty has been resolved, which may be seen as an analog of the
Clark and Kirkwood [1986] model. The goal of the individual fish-
erman is now to maximize expected profit F[m;| = F[pged (X; + 6,
F(X1))? — cet] = pgef E[(Xy + 0,F(X;))?] — ce;. In the Appendix, it
is demonstrated that expected harvest in the c.r.s. case (a = § = 0.5)
yields

(7) Ell] = a{(X; + F(X;)) — Var [(X; + 6, F(X,))*?]}

which is lower than in the benchmark model. Moreover, the difference
increases with the variation in the growth fluctuation. In the i.r.s. case
(6 =1 and o = 0.5), the harvest becomes just as in the benchmark
model (see the Appendix). This is stated as

Result 2. When harvest takes place before uncertainty is resolved, ex-
pected harvest for given resource abundance is lower than in the bench-
mark model when c.r.s. and equal to that in the benchmark model when
1.7.8.

Result 2 contrasts Result 1. Because uncertainty is unresolved when
the harvesting decision is made, an i.r.s. fishery (with 8 = 1) is now
characterized by optimal harvest as a linear function of the random
variable. On the other hand, in an c.r.s. case (with § = 0.5), the har-
vesting function is concave in the random variable. Again, the result
stems from Jensen’s inequality and has a parallel with the standard the-
ory for decisions under uncertainty (see above). Therefore, on average,
unresolved uncertainty before harvesting works as if c.r.s. fisheries, in
contrast to i.r.s. fisheries, take precaution when determining the har-
vesting effort. As a corollary to Result 1 and Result 2, we may also
state:
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Result 3. Both when c.r.s. and when i.r.s., expected harvest for a
given resource abundance is lower when harvesting takes place before
natural growth uncertainty has been resolved than when harvest occurs
after uncertainty has been resolved.

When c.r.s., the population dynamics are

(8)
Xi1 =Xy + 0 F(X;) —naFE [(Xt + 9tF(Xt))O'5] (X, + 0, F (X)),

with expected steady-state X determined by F(X)=na{(X +
F(X)) = Var[(X + 6, F(X))*?]}, or F(X) = [na/(1 —na)]X — naVar
[(X 4 6,F(X))°?]. Therefore, expected steady state is higher than
when harvest takes place after uncertainty has been resolved. This is
the obvious corollary of Result 3. Not surprisingly, we find expected
steady state in the i.r.s. case to be just as in the benchmark model.

4. Uncertain stock observations (measurement error). So
far, the assumption has been that the stock size can be observed for
sure. For large mammals, this assumption is not unrealistic, but it often
lacks realism for fish stocks (again, see, e.g., Gulland [1986], Hilborn
and Walters [1992]). Uncertain stock observations, or measurement er-
rors, are now analyzed while ignoring any natural growth uncertainty.
Contingent upon the time of measurement, it is modeled in two ways.
First, it is assumed that the exploiters assess the species abundance
just before harvesting and hence after natural growth. Second, the
stock is measured before natural growth. All the time, any measure-
ment or monitoring costs, and the fact that such costs may improve
the accuracy of the stock assessment, are neglected. In both cases, the
measurement error ¢; is captured by an i.i.d. random variable with
E[¢;] = 1 and finite support, 0 < ¢row < ¢t < Phigh < 00.

4.1. Stock measured after natural growth. When the stock
is measured after natural growth and hence just before fishing, the
exploiters consider the harvestable stock as ¢;(X; + F(X;)). There-
fore, the goal of the individual exploiter is now to maximize E[m;] =
Elpgef (6:(Xe + F(X))" — ce] = pgef B[¢]1(Xe + F(X2))? — cer.
In the c.r.s. case (& = 8 = 0.5), we find expected harvest as (again,
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see the Appendix)

(9) Ell] = a(X, + F(X;))(1 — Var[¢]"]).

Therefore, expected harvest is lower than in the benchmark model,
and the discrepancy increases with the measurement error variation.
In the i.r.s. case, the result is (the Appendix) E[h;] = a(X; + F(X;))?.
These outcomes are stated as

Result 4. With measurement error and stock measurement after
natural growth, expected harvest for given resource abundance is below
(equal to) that of the benchmark model in the c.r.s. (i.r.s.) case.

Again, the result is related to Jensen’s inequality as the random vari-
able is included in a concave and linear way in the optimal harvest
function in the c.r.s. (with 8 = 0.5) and the i.r.s. fishery (with 8 = 1),
respectively. Therefore, on average, measurement error just before har-
vesting works as if c.r.s. fisheries take precaution when determining the
harvesting effort. This was also the case in the presence of ecological
uncertainty.

In the c.r.s. case, the stock dynamics becomes
(10) Xpi1 =Xy + F(Xy) —naE[¢)°](X; + F(Xy))e)?,

with expected steady-state X determined by F(X) = na(l —
Var[¢?-°])(X + F(X)). The location of the steady state compared with
the benchmark model is generally ambiguous.'? In the i.r.s. case, how-
ever, we find the expected steady-state stock level to be just as in the
benchmark model.

4.2. Stock measured before natural growth. Finally, we
briefly look at the case in which the stock is measured before natural
growth. The exploiters consider the harvestable stock now as ¢; X; +
F(¢:X:¢), and the goal of the individual harvester is to maximize
Elm] = Elpgef (¢ Xe + F(0: X)) — cer] = paef E[(¢e Xy +
F(¢:X;))?] — ce;. The optimal (myopic) expected harvest in the c.r.s.
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case now becomes (see the Appendix)
(11) E[h]=a {X, + E[F(¢: X:)] — Var[(¢e Xi + F(:X))""] }

The variance term pulls in the direction of a smaller expected harvest
than in the benchmark model. When natural growth is given by the
standard logistic growth function, the expectation term pulls in the
same direction.'® Hence, expected harvest for a given resource abun-
dance is lower than in the benchmark model.

In the irs. case, we find E[h;] = a{X, + E[F(¢:X;)]}*>. Because
E[F(¢: Xt)] < E[F(Xy)] (see footnote 13), expected harvest is again
below that of the benchmark model of h} = a(X; + F(X;))?. There-
fore, measurement error taking place before natural growth works as if
the harvesters take precaution in the harvesting decision, even in the
ir.s. case. This is stated as

Result 5. Under measurement error with stock measured just prior
to natural growth, expected harvest for a given resource abundance is
lower than the benchmark model both when c.r.s. and i.r.s.

The population dynamics and steady state can again be computed,
and we now find that the expected steady-state stock becomes higher
than in the benchmark model in the c.r.s. case as well as in the i.r.s.
case.

5. Economic gain, or loss, of information. So far, only harvest
and stock evolvement have been considered. We now proceed to analyze
the various economic outcomes. The uncertain natural growth cases are
the only cases considered as these well enough illustrate the ambigu-
ous profitability effect of information. In this section, the steady-state
profit, or equilibrium rent, is analyzed, whereas Section 6 includes some
dynamics.

The benchmark model is studied first. The optimal effort ef (Sec-
tion 2) inserted into the individual profit function yields n; =
paf{(apg/c)(X; + F(X,))" /=X, + F(Xy))" — ef(apg/e) (X, +
F(X;))?3 /(=) With cr.s. (« = 3 = 0.5), this expression reduces
to mf = b(X; + F(X;)), where b = pa/2, and a = pg*/2c (Section
2). Therefore, the steady-state profit, or equilibrium rent, is II* =
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nb(X* 4+ F(X*)). Because F(X*) = na(X* + F(X*)) determines X*
(Section 2), the rent may also be expressed as

(12) I = (p/2) F(X™).

When irs. (¢ = 0.5 and 3 = 1), we find II* = nb(X* + F(X*))%
Because F(X*) = na(X* + F(X*))?, equation (13) holds now as well.
Therefore, when biomass grows according to a single peaked growth
function such as the logistic one, the steady-state rent will be at its
maximum when X* = X™%. Many harvesters (n is large) and a high
catchability coefficient (g is high) pull in the direction of X* < X™¥,
whereas a high cost—price ratio (¢/p is high) pulls in the opposite
direction.'

Ecological uncertainty is then considered. When harvesting takes
place with c.r.s. (&« = § = 0.5) after ecological uncertainty has been
resolved, it can be confirmed that individual profit and expected equi-
librium rent read 7; = b(X; + 6, F(X;)) and E[~] =nb(X + F(X)),
respectively. Because X is found through F(X) = na(X 4 F(X))
(Section 3), we may also write:

(13) E[l] = (p/2)F(X).

As X = X* (Section 3), the steady-state expected economic rent is
hence just as in the benchmark model. Therefore, harvesting under
stochastic ecology when c.r.s. yields, on average, the same equilibrium
rent as in the deterministic case.

The ir.s. case (o = 0.5 and 3 = 1) gives @, = b(X; + 6, F(X;))? and
E[[] = nbE[(X + 6, F(X))?]. Because F(X)= naE[(X +6,F(X))?
(Section 3), equation (14) holds now as well. As X* > X when ir.s.,
E[ﬁ] will generally differ from the benchmark rent IT*. Therefore, if the
stock is heavily exploited and X* < X™¥, we find IT* > E[II]. On the
contrary, if the stock is moderately, or httle7 exploited (because of a
high cost—price ratio, few harvesters, or both), the opposite conclusion
may be drawn. This is stated as

Result 6. When harvesting takes place after ecological uncertainty
18 resolved, there is mo economic gain from deterministic ecological
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conditions when c.r.s. In the i.r.s. case, the gain is positive (negative)
when X* < X™MY(X > XMV,

When harvest takes place before natural growth uncertainty has
been resolved, the individual optimal (myopic) effort (see the Ap-
pendix) inserted into the profit expression yields #: = pg{(apg/c)
E[(X; + 6, F(X;)) 1}/ =) (X, + 6, F(X,))" — e{(apg/e)B[(X; + 6, F
(X)°]3/ (=) When c.r.s. (« = 8 = 0.5), we may also now write
(see the Appendix):

(14) E[II] = (p/2)F(X).

The irs. case (¢ = 0.5 and f = 1) yields 7y =bFE[X; +
0{F(Xt)]{2(Xt + QtF(Xf)) — E[Xf + 0,5F(Xf)]}, and equation (15) still
holds.

In the c.r.s. case, we have X > X* (Section 3). Therefore, E[IT] > IT*
when X < X" In the L.r.s. case, on the other hand, the outcome is
E[II] = IT* because X = X*. We may therefore state:

Result 7. When harvesting takes place before ecological uncertainty
is resolved, there is no economic gain from information when i.r.s.
In the c.r.s. case, the gain is positive (negative) when X* > X™Y
(X < Xmsy).

The fact that more information may reduce profitability is obviously
a counterintuitive result. However, it is readily explained by the my-
opic nature of the harvesting. The various steady states, as well as the
transition paths, are therefore of a second-best type, and hence the ex-
ploiters may be better off with less information. This possible outcome
follows the classic externality paper by Lipsey and Lancaster [1956]. It
should be noted that the same results prevail with just one harvester
(n = 1) while still (somewhat unrealistic) having myopic resource uti-
lization. Therefore, Results 6 and 7 are due to the myopic nature of
the exploitation.

6. Numerical illustration. The theoretical reasoning when we
have ecological uncertainty is now illustrated numerically. The natural
growth function, assumed to be of the logistic type (Section 2), is given
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FIGURE 1. Stock expansion paths. Harvesting before ecological uncertainty
is resolved. The c.r.s. case, na = 0.2.

with parameter values r = 0.5 and K = 5 (in, say, 1,000 tonnes). All
the time, we use p = 160 (in, say, Euro per tonne) as the harvest price,
whereas the value of na is changed throughout (which may happen
through ¢, ¢ or n, or all). The stochastic density function is specified
just as in Clark and Kirkwood [1986] and reads f(6;) = 1/2~ for 010, =
1 -7 <6, <14 v =0 and zero elsewhere. This distribution has
unit mean and Var[f;] = o2 = +?/3.

First, under the assumption of c.r.s. (¢ = § = 0.5) and harvesting
taking place before ecological uncertainty is resolved, Figure 1 demon-
strates two stock expansion paths with different variations Var[f;]. As
a corollary of Result 2, both paths will fluctuate around a steady state
above that of the benchmark value, as given by F(X*) = na(X* +
F(X*)), or X* = 2.5, for the given parameter values. Larger variation
pulls in the direction of a higher expected steady-state value.
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TABLE 1. Steady-state stock, harvesting, and profit. Harvesting after ecological

uncertainty is resolved. The i.r.s. case.

na o X Eh] EI]
0.05 0* 2.883 0.610 48.8
0.12 2.882 0.610 48.8

0.29 2.872 0.611 48.8

0.58 2.836 0.614 49.1

0.10 0* 1.828 0.580 46.4
0.12 1.825 0.579 46.3

0.29 1.808 0.577 46.2

0.58 1.747 0.568 45.4

0.20 0* 1.018 0.405 32.4
0.12 1.015 0.404 32.3

0.29 1.000 0.400 32.0

0.58 0.947 0.384 30.7

0.30 0* 0.701 0.301 24.1
0.12 0.699 0.301 24.1

0.29 0.686 0.296 23.7

0.58 0.645 0.281 22.5

*Benchmark model.

Next, Table 1 illustrates how steady-state expected harvest, resource
abundance, and profit vary with the exploitation pressure na and
growth variation when harvesting occurs after ecological uncertainty
is resolved. The expected values coincide with the benchmark model in
the c.r.s. case (not shown in the table), whereas the steady-state stock
will be below that of the benchmark model when i.r.s. (& = 0.5, 8 = 1),
which is a corollary of Result 1. It is also seen that expected profitabil-
ity is above that of the benchmark model for a low harvest pressure
and is lower for a high pressure. This confirms Result 6. However, the
differences are small, but they increase somewhat with the amount of
growth variation.
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TABLE 2. Steady-state stock, harvesting and profit. Harvesting before ecological

uncertainty is resolved. The c.r.s. case.

na o X E[h] EI]
0.10 0* 3.889 0.432 34.6
0.12 3.889 0.432 34.6

0.29 3.890 0.432 34.5

0.58 3.892 0.431 34.4

0.15 0* 3.235 0.571 45.7
0.12 3.236 0.571 45.7

0.29 3.238 0.570 45.6

0.58 3.247 0.569 45.2

0.20 0* 2.500 0.625 50.0
0.12 2.501 0.625 50.0

0.29 2.507 0.625 49.9

0.58 2.530 0.624 49.5

0.30 0* 0.714 0.306 24.5
0.12 0.720 0.308 24.6

0.29 0.748 0.318 25.4

0.58 0.848 0.352 28.2

*Benchmark model.

Finally, Table 2 demonstrates the situation when harvest takes place
before ecological uncertainty is resolved. The expected values coincide
with the benchmark model in the ir.s. case (not shown in the ta-
ble), whereas the steady-state stock is higher when c.r.s. (Result 2).
It is also seen that expected profitability is above that of the bench-
mark model for a high harvest pressure and is the opposite for a low
pressure. This confirms Result 7. Furthermore, the main impression
is that natural growth variation has a small and modest effect on
stock size and profitability. The exception seems to be the combi-
nation of high exploitation pressure and substantial natural growth
variation.
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7. Concluding remarks. The resource management scheme con-
sidered in this paper falls in the category of a small-scale in-shore fish-
ery in a developing country setting. The exploitation takes place within
what Baland and Platteau [1996] refer to as an unregulated common
property regime and in which the fishermen exploit the resource stock
in a myopic profit-maximizing way; that is, the fish stock is considered
as exogeneous under the harvest decision. The number of harvesters is
assumed fixed because of a possible license system that restricts the en-
trance of new fishermen. The effects of uncertainty are analyzed under
different assumptions about when uncertainty is resolved (under eco-
logical uncertainty) and the timing of measurement (under measure-
ment error). Under measurement error, we find the average harvest,
for a given resource abundance, to be lower than that of the bench-
mark model (no uncertainty). The same result applies for ecological
uncertainty when harvesting takes place after uncertainty is resolved.
However, if harvesting takes place before ecological uncertainty is re-
solved, expected harvest is above, or equal to, that of the benchmark
model.

The model has been analyzed under two scale specifications of the
harvest function. The c.r.s. case is studied when the resource stock elas-
ticity § is 0.5, whereas it equals 1 in the i.r.s. case. For tractability, the
effort elasticity « is, all the time, assumed to be 0.5. However, it can be
demonstrated that several of the derived results apply to all 0 < o < 1
(see the Appendix). Under measurement error, exceptions include c.r.s.
cases in which « differs from 0.5. Under ecological uncertainty when
harvesting takes place after uncertainty is resolved, exceptions include
the i.r.s. case in which « differs from 0.5. Second, in the c.r.s. case with
(e + 8) = 1, and in which harvest takes place before uncertainty is
resolved, we cannot conclude expected harvest to be below that of the
benchmark model for a and § values different from 0.5.

In most instances, both types of uncertainty work as a precautionary
role as the expected steady-state stock level is above that of what
we find in the absence of uncertainty. However, the economic effect
of uncertainty is unclear. When natural growth is governed by the
standard logistic growth function, it is demonstrated that the economic
gain, or loss, of information depends on whether expected steady-state
stock is above, or below, the maximum sustainable yield (msy) level.
When harvesting takes place after ecological uncertainty is resolved,
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there is no economic gain from deterministic conditions when c.r.s.
with a = 0.5 and 8 = 0.5. It can be demonstrated (the Appendix) that
this result applies to all stock and effort elasticity values (o + 3) = 1.
When harvesting takes place before ecological uncertainty is resolved
with c.r.s., there is a positive economic gain from information when
the stock level is above the maximum sustainable yield, whereas the
gain in information is negative when the resource is heavily exploited.
Under i.r.s. with a = 0.5 and 8 = 1, we find no economic gain from
information. In the Appendix, it is shown that this result holds for all
0 < a < 1. The fact that more information may reduce profitability is
strange, but this finding is embedded in the very nature of the myopic
structure of the harvest, which implies that the solution concepts are
of the second-best type (Lipsey and Lancaster [1956]). The analysis
is also illustrated numerically, and the effect of biological uncertainty
seems to be small when the harvesting pressure is small and modest.
These results are in line with the findings of Sethi et al. [2005].
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APPENDIX

A.1. Ecological uncertainty. When harvesting takes place
before uncertainty is resolved, the (myopic) optimal effort and
harvest become é = {(apq/c)E[(X; + 6:F(X;))’]}"/(1=%) and h; =
alapa/)*! 1= E((X: + 8. F(X,))P [}/ 0-0) (X, + 0, F(X,)?, respec-
tively. In the crs. case (¢ = B = 0.5), this yields hy =
aB[(X; + 0, F(X,))"5)(X, 4+ 6, F(X,))°?. Expected harvest is E[h;] =
aE[(X; + 0, F(X;))"5]?, which may also be written as in main-text
equation (7). In the i.r.s. case (8 = 1 and o = 0.5), the harvest becomes
hi = aE[X, + 0, F(X,)|(X; + 6,F(X,)). Expected harvest is therefore
just as in the benchmark model, E[h] = a(X; + F(X;))2.

A.2. Uncertain stock observations. When the stock is
measured after natural growth and hence just before harvest-
ing, the (myopic) optimal effort becomes ¢ = {(apq/c)E[¢)]
(X, + F(X;))?}/(=2)  whereas the harvest reads hy =
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glapg/c)*/ = { B[]}/ =) (X, + F(X,))?/ 0= ¢].  Accordingly,
in the c.r.s. case (a = 8 = 0.5), we find hy = aE[¢?°](X; + F(X;))#),
and main-text equation (9) yields expected harvest. In the i.r.s. case
(8 =1and a = 0.5), the result is h; = a(X; + F(X;))*¢;.

When the stock is measured before natural growth, maximiza-
tion yields & = {(apq/c)E[(¢:X; + F(6: X))’} and Ry =
q(apa/c)*! VB¢ Xy + F(ee X)) 30 (00 Xs + FonX0))'.
When crs. (o = B = 0.5), we find h =aE[(¢:X; + F(¢y
X)) (e Xy + F(9: X4))?%, and equation (11) yields expected
harvest. In the ir.s. case (8 = 1 and o = 0.5), the harvest reads
he = aE[¢; Xy + F(p X)) (0 Xy + F( Xy)).

A.3. Economic gain, or loss, of information. When harvest
takes place before natural growth with c.r.s. (a = 8 =0.5), we find ﬁt =
bE[(X; + 0,F (X)) H{2(X; + 6,F(X,))"° — E[(X; + 0, F(X )"}
Elm] = b{X; 4+ F(X;) — Var[(X; + 6, F (Xf))U °]} and E[H] = nb{X +
F(X) - VarL(X + 0, F(X X))0-5]. Because X is defined by F(X)=
na{X + F(X) — Var[(X + 6, F(X))*®]} (Section 3), equation (14)
yields expected profit.

In the irs. case (8 = 1 and a = 0.5), we find E[[] = nb(X +
F(X))2. Because F(X) = na(X + F(X))? (Section 3), equation (15)
still holds.

A.4. Generalizations: ecological uncertainty. When har-
vesting takes place after uncertainty is resolved, we have hy =

q(apq/c)®/ V=) (X; + 6, F(X;)) in the general c.r.s. case with (o + 3) =
1. Expected harvest is E[htl = q(apq/c)*/1 =) (X; + F(X})), which
equals the benchmark harvest. Therefore, Result 1 holds for all o and
(3 values consistent with c.r.s.

When harvesting takes place before uncertainty is resolved
expected harvest is generally given as E[h{] = q(apgq/c)*/ (=)
{B[(X; 4+ 6, F(X,))’]}"/('=). When 8 = 1, it simplifies to E[h;] =
q(apq/c)/ =X, + F(Xt)}l/(l_“)7 which equals the optimal harvest
in the benchmark model. Therefore, Result 2 holds for all 0 < a < 1
and 0 = 1.
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A.5. Generalizations: measurement error. When the stock
is measured after natural growth, the optimal harvest reads h; =
g(apg/c)*/ =) (X + F(X;))* U= (X, + ¢, F(X;)) when 8 = 1.
Therefore, expected harvest equals FE[h;] = q(apq/c)®/ M=) (X; +
F(X;)"/0=) for all 0 < o < 1 with 3 = 1. This is just as in the
benchmark model. Hence, Result 4 holds when i.r.s. for all 0 < o < 1
and 0 = 1.

When the stock is measured before natural growth, the op-
timal harvest generally reads Ty = q(apq/c)®/ I {E[(¢: X, +
F(¢: X)) 13/ 0= (¢ Xy + F(¢e X))? (see above). With g = 1,
expected harvest equalizes E[h] = q(apg/c)*/T={X; +
E[F(¢:X;)]}"/ (=), Therefore, when using footnote 13, Result 5
holds for all 0 < o« < 1 and B = 1.

A.6. Generalizations: profitability. When harvesting takes
place after uncertainty is resolved, we have seen that Result 1 holds
for all @ andf3 values consistent with c.r.s. Therefore, Result 6 holds as
well for all & andf values consistent with c.r.s. When harvesting takes
place before uncertainty is resolved, Result 2 holds for all 0 < o < 1
and 0 = 1. Consequently, Result 7 holds when i.r.s. for 0 < a < 1 and

B =1.

ENDNOTES

1. The terms risk and uncertainty are often used to characterize various situa-
tions of incomplete information. Risk is usually taken to mean a situation in which
the probability distribution is known. Uncertainty, on the other side, means a situa-
tion in which the probability distribution is not known. The first of these situations
is considered here. Nevertheless, we use the term uncertainty.

2. Sethi et al. [2005] introduce harvest implementation uncertainty as well.

3. Instantaneous fishing is somewhat easier to analyze than continuous fishing
over a given fishing season (because of a simpler cost function). As long as, say,
ecological uncertainty is resolved either before the fishing season starts (as in Reed
[1979]) or after the season ends (as in Clark and Kirkwood [1986]), uncertainty
influences exploitation in the same principal manner under instantaneous and con-
tinuous fishing.

4. One of the referees has suggested that a utility maximization approach is
more suitable than profit maximization when analyzing a small-scale fishery and in
which the marginal utility of the catch should decrease with the amount harvested.
We agree on this when considering a subsistence fishery, but here we are basically
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thinking of a fishery supplying products to a market (cf. Section 1). The profit-
maximizing approach, however, easily fits into a framework in which the marginal
utility of the catch declines. To see this, the individual utility function may be
specified as U, = Ah] — we;. The marginal disutility of effort is then fixed by w,
whereas A is a scaling parameter. With n < 1, and inserting for hy = gef (X; +
F(X.))?, it is recognized that maximization of U; boils down to the same problem
as the main-text maximization of 7, .

5. Because of the lack of any strategic interaction among the exploiters, the num-
ber of fishermen does not influence the individual effort use at a given point of time.
However, n influences the effort use indirectly through previous years’ harvesting.
In renewable harvesting models, strategic interaction is usually channeled through
the resource stock, resulting in reciprocal cost externalities. Under myopic harvest-
ing in which the stock is treated as exogenous by the exploiters (as here), this type
of strategic interaction is hence ruled out. There may also be strategic interactions
through various markets in which the product market for fish may be of particular
relevance. However, this possibility is not explored in this paper as the harvest price
is assumed to be fixed and given.

6. Hence, irrespective of the price—cost ratio and other parameter values, harvest
will always take place as long as the stock size is positive. This is due to the fact
that the marginal profit, when X; > 0, always will be positive for a small effort use
(because a < 1).

7. Scale properties are usually studied within a framework in which the firm
chooses the amount of the various production factors. Therefore, the present model
is different as the fish abundance is exogenous for each harvester. The notions of
c.r.s. and i.r.s. should be seen in this light. See also the discussion in Reed [1979].

8. There are two reasons for this: first, the intrinsic growth rate of commercial
species such as fish and large mammals is relatively small, and second, harvesting
stabilizes. See the classical May [1975] paper. When working with the standard
logistic natural growth function (main text below), it is straightforward to show
that (local) stability demands na/(1 — na) < r < (2 + na)/(1 — na). A higher
n (or a) increases the right-hand side of this inequality, meaning that harvesting
works in a stabilizing manner. It is also recognized that the left-hand side of this
inequality is the condition for not depleting the resource.

9. Conceptually, we may think that a fishing authority measures the stock after
harvest and announces the stock.

10. This result may also be seen in light of, say, the standard production theory
model of the firm under product price uncertainty. The finding here is that expected
production should be identical to the no uncertainty case when the stochastic term
is embodied in a linear way in the profit function (“risk neutrality”). On the other
hand, when embodied in a convex function, the result is typically higher production
under uncertainty (“risk lover”).

11. The difference depends on whether the expected steady state is located above
or below the maximum sustainable yield (i.e., whether X < X™% or the opposite
holds). If the stock is above steady state, then higher expected harvesting in the
i.r.s. case means a lower expected steady-state stock compared with the benchmark
model.

12. The location of the solution in relation to the maximum sustainable yield
stock is again crucial (cf. footnote 11).
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13. We find E[F(¢,X,)] = E[r¢: X1 — ¢, X,/K) = rX,(1 — X(1 +
Var[¢])/K). Uncertain stock observation hence works as if the carrying capacity
becomes smaller and E[F (¢, X;)] < E[F(X,)].

14. Ceteris partbus, we may hence find that many harvesters can produce a higher
equilibrium rent than few harvesters, suggesting that the cost—price ratio is high.
Such an outcome contrasts standard harvesting theory, in which the equilibrium
rent decreases steadily with the number of exploiters and equals zero when the
number of exploiters approaches infinity (see, e.g., Mesterton-Gibbons [1993]). In
our myopic harvesting model, however, the zero-profit condition coincides with
the stock depletion condition. In the c.r.s. case, the positive rent condition is hence
F’(0) > (1 — na)/na. With logistic growth (Section 2), this may be written as (r/a)
I+7r)>n.
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