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20 Modelling the recolonisation of
native species

Anders Skonhoft

1 Introduction

Recolonisation of native species typically represents an institutional
change and reflects society’s changing attitude to the species cost and ben-
efit streams. When successful, recolonisation often influences the ecology
and may come into conflict with existing economic activity. Such conflict
may be particularly controversial and severe when the recolonised species
are large carnivores, like wolves and grizzlies, which kill livestock and
prey species with hunting and meat values. Recolonised animals may also
induce conflicts with existing economic activities, like agriculture, includ-
ing eating up crops and pastures and causing browsing damage. However,
recolonised native species may also create hunting and trapping value or
other types of consumptive values, in addition to non-consumptive val-
ues like existence value, tourist value and so forth (see Freeman 2003
for a general overview and Nunes and van den Bergh 2001 for a crit-
ical discussion of species valuation). In addition to ecology, these cost
and benefit components and wildlife conflicts depend on the economic
and institutional setting and there are obvious differences between, say,
an East African region where people are located near wildlife with living
conditions closely related to agricultural activities and, say, a region in
Europe or North America where most people experience wildlife only
through non-consumptive uses (Swanson 1994). The management goal
will also generally differ. For these and other reasons it may seem difficult
to formulate a general analytical model for studying economic impacts of
species recolonisation. Nevertheless, this is actually what this chapter will
attempt to do. Within such a general framework, however, several cases
associated with specific economic and ecological circumstances will be
considered. In the last part of the chapter, a more detailed example is
studied.

Acknowledgements: Thanks to Anne B. Johannesen, Eric Naevdal, Jon Olaf Olaussen
and one of the editors, Unai Pascual, for constructive criticism on an earlier draft of this
chapter.
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making a distinction between predator-livestock conflicts and predator—
game conflicts.

In what follows, we basically examine species recolonisation. However,
due to the somewhat unclear terminology and lack of precise definitions,
the terms recolonisation and reintroduction will often be used synony-
mously. Previous economic analysis of recolonisation is scarce and only a
few references are reported when using the term reintroduction in Econlit
(no citations are reported when using the term recolonisation). A key
paper is that of Rondeau (2001). He formulates an optimal control model
aiming to analyse the reintroduction of a white-tailed deer population
with numerical examples from the USA. In this work the shadow price
of the reintroduced species may be either positive or negative, depending
on the cost and benefit structure as well as the biological growth con-
ditions. Rondeau’s (2001) study hence has similarities with the recent
bioeconomic literature where species may be valuable but also a pest (e.g.
Huffaker ez al. 1992; Zivin et al. 2000; Horan and Bulte 2004; Skonhoft
and Schulz 2005), but it offers a more in-depth dynamic analysis than
these other papers. One reason for this, which is a special feature of the
Rondeau model, is that introduction of species is explicitly considered in
the population growth model; that is, the stock may grow according to
new species introduced from outside areas in addition to natural growth.

In contrast to Rondeau (2001), we consider an area with no further
introduction. We are also looking away from possible dispersal, or migra-
tion, from outside areas. This approach is very similar to previous studies
of the cost of invasive species (Perrings 2007) where the so-called ex ante
net benefit (the scenario without invasive species) is compared with the
ex post benefit (the scenario with invasive species). The various cost and
benefit streams related to recolonised species, as experienced by different

agents, or groups of people, will be considered within a unified manage-
ment scheme. It is assumed that a benevolent social planner maximises
the present-value social surplus. This can hence also include values expe-
rienced outside the given area that typically may include existence values.
We continue this chapter with a formulation of a general bio-economic
model of species recolonisation. In section 3, various special ecological
and economic cases of this general model are considered. Then in sec-
tion 4 one of these versions is analysed in more depth, focusing on the
recolonisation of the grey wolf in Scandinavia. This section also contains
a numerical illustration. The last section concludes with a summary of
the main findings and gives some policy implications. The general con-
clusions are that some control of the recolonised species often pays off.
However, recolonised species should be kept uncontrolled when they
() do small damage, (ii) are expensive to control and (iii) prey upon
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inflow from outside areas. In addition, and in contrast to Rondeau (2001),
we assume y > 0, indicating that any direct man-made effort to reintro-
duce species is neglected as well. Accordingly, only natural growth in , idge.
the given area together with possible control measures governs the pop- o
ulation growth of the recolonised species. 3G/3 X = Gx may be either
positive {predator-prey relationship and where the reintroduced species
is the predator) or negative (competitive relationship, or the reintroduced
species is the prey). G can also be zero, or close to zero, which typically
happens if the recolonised species is of the opportunistic type; that is,
the food intake may be grass as well as different sources of meat. The
brown bear (Ursus arctos) may fit this category, but also the grey wolf (see
below). Finally, own density dependent growth Gw is generally assumed
to be positive for a ‘small’ stock and negative for a ‘large’ stock. We further
assume G(0, X) = 0 together with strict concavity, Gww < 0.
The population growth of the existing species follows next as

dX/dt=F(X, W) —h 2

where # > 0 is the harvest, or trapping, and F(..) the natural growth func-
tion. Also, F, < 0 if the recolonised species competes with the existing
wildlife or it is a predator—prey relationship and the recolonised species is
the predator. If it is a prey, the effect will be the reverse and thus positive.
However, this effect also may be weak, or even negligible. As above, Fx
is typically positive for a ‘small’ stock size and negative for a ‘large’ stock
size and also F(0, W) = 0 and strict concavity in own density, Fxx < 0,

are assumed.
The current net benefit, or social surplus, is given as

& = H(y, W) + ROW) — S(W) + V(b X) + QX) — DX €)

where H(y, W) is the benefit of controlling the recolonised species while
V(h, X) is the net hunting, or trapping, value of the existing species, both
terms generally depending on the number of animals removed together
with the species abundance, Hy > 0 and Vx > 0. These values may be
positive, negative or zero. For instance, H(v, W) > 0 when the harvesting
value is substantial and the harvesting cost is small, while H(y, W) <0
when the cost of removing the recolonised stock is substantial, accompa-
nied by a small, or perhaps negligible, harvesting value.

Furthermore, as already indicated, the production activities practised
within the given area interacting with the ecology typically depend on
the species density and are of various categories (Table 20.1). First of
all, S(W) > 0, with S(0) = 0, is the cost of, say, predation on livestock,
or grazing damage of the recolonised species, with more species imply-
ing higher costs, S’ > 0. S(W) may therefore typically reflect the cost of

idgé.
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Table 20.1 Valye categories

Extisting species
H, W) R(w) S(W) LV o D(Xx)

Hunting/  Positive stock Negative stock Hunting/
trapping  value (existence value (grazing

Recolonised species
_— —_—

Positive stock Negative stock

trapping  value (existence value (grazing
value value, viewing damage, value value, viewing and browsing
value, tourist livestock value, tourist damage, etc.)
value, etc.) predation, etc.) value, etc.)

livestock predation if the recolonised species is a large carnivore, while
being grazing damage if it is a herbivore (Zivin ez al. 2000). R(®), with
R(0) = 0, yields the existence value, viewing value, tourist value, etc, of
the recolonised species and is also generally increasing in the number
of animals, R > 0, but the marginal benefit may be decreasing, R < 0
(Krutilla 1967). We next have the already existing species stock values,
and where D(X) is the potential damage cost, also supposed to increase
in the species density, IV > 0 with D(0) = 0. This cost may represent
browsing, or grazing, damage, such as moose causing forestry damage
(see example below). The existing wildlife also generally carries a posi-
tive stock value Q(X), like existence value, with Q(0) = 0. Also here we
typically have ¢/ > 0 together with Q" < 0.

When the social planner aims to maximise present-

PV, the problem is to find harvest and control rates
maximise

value net benefit,
of the species that

PV:/[HO/, W) + R(W) — S()
[4]

TV X+ 0(X) - D(X))ed; €

subject to the ecological growth equations (1) and (2), together with the
initial stock sizes and where § > 0is the (social) discount rate assumed to

be constant through time. The current value Hamiltonian of this problem
reads

V=HG, W)+ RW) ~ S(W) + V(h, X) + O(X) — D(X)
+u[GW, X) — 3] + A[F(X, W) - 1] (4a)

with y and % as control variables, Wand X as state variables and A and u
ng species and the recolonised species,

as the shadow values of the existi
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respectively. It follows that the conditions (5-8) yield the necessary
conditions for a maximum when it is socially desirable to keep both
species and when any upper binding constraints on the control variables
are neglected.

oV/3y=H,(», W) —n<0; y>0 (5)
IV/dh=Vi(h, X) —A<0; h>0 (6)
du/det =8 — dW/dW = §u — Hy(y, W) — R(W) + S(W)

— uGw (W, X) — AFp(X, W) ' O
di/dr =80 —dW/3X =81 — Vx(h, X) — O/(X) + D'(X)

— uGx(W, X) — AFx(X, W) (8

The control condition (5) holds as an equality if it is optimal with
control, y > 0, of the recolonised species along the optimal trajectory.
The marginal net harvesting benefit should then be equal to the species’
shadow value. Otherwise, with y = 0, it will be inequality. If it is optimal
with no harvest of the existing species, condition (6) also holds as an
inequality. In both instances of zero harvesting, the marginal benefit of
control, positive or negative, should be below that of the shadow price,
which may be positive or negative as well (more details below). The
portfolio conditions (7) and (8) reflect the evolution of the shadow price
of the recolonised species and the existing species, respectively. Dividing
with u, condition (7) is the recolonised species Hotelling efficiency rule,
indicating that the growth rate of the shadow price should be equal to the
external rate of return as given by the discount rent §, minus the internal
rate of return. Condition (8) has a similar interpretation for the existing
species.

The shadow prices may be eliminated from the above system (5)—(8)
and the reduced form solution together with the ecological growth equa-
tions (1) and (2) yield, in principle, a set of four interconnected differ-
ential equations between the two control variables, y and %, and the two
state variables, W and X. However, it is not possible to say very much
about the dynamics, or the steady state, of this system without further
specification of the functional forms and without stating whether the eco-
logical interaction is of the competitive or predator-prey type. Even then,
the system will typically be too complex — see, for example, the much sim-
pler two-species model in Ragozin and Brown (1985) where the predator
alone is subject to harvest and there are no stock values. We therefore
proceed to look at some simplified cases.
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3 Simplified cases

Not surprisingly, loosening up the interaction between reintroduced and
existing species results in more tractable situations to analyse. The same
occurs if the net benefit functions of species control are given a more
specific content. Altogether, four special cases are considered. First, two
cases assuming negligible ecological interaction are studied. Then, two
other cases are analysed with simplified harvesting functions.

3.1 The case of negligible ecological interaction

In many instances, the interaction between recolonised species and exist-
ing species is weak, or even negligible. The above example of the Euro-
pean bison is of this type and this may also be so when the recolonised
species is of the opportunistic type (like the brown bear). The natural
growth functions of the recolonised species and the existing species (1)
and (2) reduce then to G(W) and F (X), respectively. As a consequence,
there will be no economic interdependency between the species as well
and the recolonised species can be managed separately from the existing
one. Therefore, conditions (5) and (7a) yield the optimality conditions
for the recolonised species together with d Widt = G(W) — 4.

dp/dr = 8 — Hy(y, W) — R(W) + S(W) — uG' (W) (7a)
As the harvesting value may be either positive or negative and various
stock values are included, this is very similar to the models considered
by Horan and Bulte (2004), Skonhoft and Schulz (2005) and others. As
demonstrated in these models, the shadow price, 1, may be positive or
negative. It will be positive if harvesting is profitable, while it is nega-
tive when controlling is a costly activity mainly for damage control. The
ambiguous sign of the shadow price can result in a non-convex Hamil-
tonian together with possible multiple equilibria (see also Rondeau 2001
and Dasgupta and Miler 2003). Obviously, we find the shadow price
to be negative if the recolonised species (when controllable, see below)
carries no trapping or hunting value, but demand effort to be controlled.
It may, however, even be negative with a positive harvesting value if it,
on the margin, is more costly to control the species so that H,(y, W) is
negative at the optimum. Horan and Bulte (2004) analyse the dynam-
ics of this model. When a non-linear control benefit function Hi (v, W) is
applied, they find, not surprisingly, the steady state(s) to be of the saddle
point type.
When it is optimal to steer the system towards the steady state(s), condi-
tion (5) as an equity combined with (7a) gives the golden-rule condition:

G(W)+ Hyw(y, W)/ H,(y, W)
+[R(W) - S’ (W)]/Hy(y, W)=36 )
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The left-hand side of (9) yields the internal rate of species return at
the optimum, which should be equal to the external rate as given by the
discountrent §. This condition together with the species growth condition
(1) in equilibrium determine the steady states for W* and y*. If the shadow
price is positive and there is a positive net harvesting benefit, H, > 0, and
the negative stock value dominates the positive one, (§' — R) > 0, it is
seen that it is optimal to keep a small density of the recolonised species.
If the shadow value is negative and the species may be classified as a pest,
we reach the opposite conclusion. The comparative static results may also
be ambiguous and typically we find that a higher rate of discount yields
a higher steady-state stock W* when the shadow price is negative, which
is the opposite of the standard harvesting model (Clark 1990). See also
Skonhoft and Schulz (2005).

3.2 The case of a fixed shadow price of the recolonised species together
with negligible interaction with the existing species

Often it may be reasonable to assume that the control cost of terres-
trial animal species is density independent. This typically occurs under
a hunting licence scheme (see below). If additionally the net harvesting
benefit, positive or negative, is linear in the amount of animals controlled,
or harvested, condition (5) indicates a constant shadow price when it is
beneficial to control the species along the optimal trajectory. When still
assuming a negligible ecological interaction, the recolonised species port-
folio equation (7a) reduces to

0=ué— R(W)+ S(W) — nG' (W) (7b)

Equation (7b) is a static one because the Hamiltonian now is linear in

the control y and the dynamics leading to the steady state will be of the
Most Rapid Approach Path (MRAP dynamics, see, for example, Clark
1990). The golden rule condition (7b) also indicates that the internal rate
of return, now as G’ + [R — §'1/u, should be equal to the external rate,
8. Another interpretation is that the net marginal value of the species ‘in
the forest’, (uG + R — §), should be equal to the marginal harvesting
value ‘in the bank’, ©é.

If u* > 0, condition (7b) represents the solution of the standard one-
species harvesting model missing the usual stock-dependent cost term,
but extended with positive as well as negative stock values. Depend- i
ing on their marginal values, the optimal number of species W* can
be below or above that of the maximum sustainable yield level, W,,.

If it is costly to control and u* < 0, we find that the optimal managed
stock will be smaller when a nuisance effect is linked to it than without
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this effect. Therefore, reintroduced species will be left uncontrolled if
they have no negative effect and are costly to control.

An even more simplified situation emerges if the harve

sting benefit is
small or negligible, i.e. H (, W) = 0. As the marginal harvesting income is
also zero, H

L, = 0, u* = 0 when it is still beneficial to control the species.
Condition (7b) reduces then further to —R/( W)+ S(W) =0 and the
socially desirable number of species W™ is simply determined by the
equalisation of the marginal values.! While the optimal species number
is invariant of natura] growth, the steady-state harvest follows from the
population growth equilibrium G(IW*) = y*. The same conclusion may
be reached when the existing species influences the growth of recolonised
species, thus with G( W, X). Of course, in this case the level of the control
y* will differ.

In case it is socially desirable not to control, or harvest, the species
along the optimal trajectory, condition (5) yields i > 0 when H, =0.The
number of recolonised species would then approach its carrying capacity
in the long term. From condition (7b), u* = (R — 8)/G6 - G) is the
shadow price of the unexploited stock. Because G is a humped function
with G’ < 0 in the unexploited situation (section 2 above), (R — 8) > 0

must hold to ensure a positive shadow value. Thus, not surprisingly, it is

seen thar reintroduced species unambiguously w

ill be left uncontrolled if
they have no negative effect.

3.3 The case of ecological interaction without harvesting benefit
of the recolonised species

For various reasons, the harvesting profit of the recolonised species may

be zero, or close to zero, This may happen if, say, the harvesting benefit
is small and negligible and the control cost is small and negligible as well
(see the wolf example below). When H(y, W) =0, i =0 still holds if
it pays to control along the optimal trajectory. When there is ecological

interaction, the portfolio conditions yield
0=—R(W)+ S(W) — AFy(X, W) (7c)

and

dhfdr = 8\ — Vx(h, X) ~ Q/(X) + D/(X) — A(X W) (8a)

! Concavity of the Hamiltonian requires in this case that R — &

< 0 (c.f. section 4).
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The portfolio condition (7¢) of the recolonised species is also now a static
equation and it can be noted that the opportunity cost of the recolonised
species’ biological capital is zero as the discount rent § is not included.
The optimal number of animals is found where the marginal stock value
R (W) is equal to its marginal cost, comprising the damage cost, S(Wy,
and the cost of predation evaluated at the existing species shadow value,
AFw(X, W). :

To solve this system, the shadow price of the existing species, A, may in
a first stage be eliminated from equation (7¢) and (8a) by using the control
condition (6) which holds as A = V,(k, X) when harvest of the existing
species takes place along the optimal trajectory. W can be expressed as
a function of X and 4 through equation (7c). In a next step, W may be
substituted away from (8a). The reduced-form dynamic system is con-
sequently steered by equation (8a) together with the population growth
equation (2), comprising the variables Xand 4. The dynamics of this sys-
tem may be quite similar to the first case with no ecological interaction
between the species, thus yielding the possibility of multiple equilibria
for the recolonised species. At the steady state, it can be shown that
R(W*) — S(W*) > 0ifA* >0 and the recolonised species prey upon, or
compete, with the existing species (i.e. Fiy < 0). The opposite holds if
the existing species turns out to be a pest and A* < 0.

3.4 The case of ecological interaction without harvesting benefit of the
recolonised species and with a constant harvesting value of the
existing species

In some instances the harvesting value of the existing species may simply
be given by the meat value, or net hunting price p. Therefore, the harvest-
ing value becomes V(X, k) = ph and condition (6) reduces to p = A if it
is profitable to harvest. If condition H(y, W) = 0 with 4 =0 holds and
it is still beneficial to control the recolonised species along the optimal
trajectory as well, it turns out that

0=—RW)+S(W) — pF(X W) (7d)
and
0=258p— Q(X)+ D(X) — pFx(X, W) (8b)

This is 2 double singular system with dynamics of the MRAP type, or
close to MRAP (see Clark 1990). While the natural growth of the exist-
ing species still influences the outcome, the recolonised species’ natu-
ral growth does not because of the assumption that harvesting has zero &
profit and u = 0. If the recolonised species prey upon, or compete, with
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the existing species, R (W*) — S(W*) > 0 holds unambiguously at the
steady-state equilibrium. Not surprisingly, a higher positive marginal
species value yields a higher optimal stock while more damage works in
the opposite direction. Even in this simplified model, however, other com-
parative static results are far from clear and
may either increase or reduce the optimal number of recolonised species.
"The stock effects of a higher discount rate § are generally unclear as well.
These results are examined in more detail in the example of the recoloni-

sation of the grey wolf in Scandinavia which includes a wolf-moose (Alces
alces) ecological interaction.

a higher harvesting price, N

4 The recolonisation of the Scandinavian wolf

In the mid-1960s, the grey wolf was regarded as functionally extinct in
Norway and Sweden (the Scandinavian Peninsula). However, due to ban-
ning of earlier hunting practices it recolonised and in the latter part of the
1970s the first confirmed reproduction in fourteen years was recorded.
Since this first reproduction in Northern Sweden, all new reproductions
have been located in South-central parts of the Scandinavian Peninsula.
The recolonised wolf population in Scandinavia now numbers some
100-120 individuals which live in small family groups, or packs, in
the Western-central part of Sweden and along the border area between
Norway and Sweden (Wabakken ez al. 2001).

Although the wolf population is still numerically small, its recolonisa-
tion is already associated with several conflicts. One is due to predation
on livestock, including sheep and reindeer. Although the total 10ss is
modest, some farmers in a few areas have been seriously affected, as in
the abovementioned example from Yellowstone. In addition, predation
on wild ungulates is another conflict, especially where the wolf shows a
particularly strong preference for moose. As a consequence, a smaller
moose population is available for hunting. In fact, while the problem of
moose predation also takes place in only a few areas, it has caused great
concern in rural Scandinavia because moose'is by far the most important
hunting game species, with about 40,000 and 100,000 animals (with a
mean body weight of about 190 kg for adult females and 240 kg for adult
males) shot every year in N orway and Sweden, respectively. In addition,
moose hunting in September/October is an important, if not the most
important, social and cultural event in many rural communities (Skonhoft

2006).
Moose-wolf ecology has been subject to several intensive studies,
mostly in North America. From these studies it appears clear that wolves,

when present, influence the abundance of moose (Peterson 1999). The
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Scandinavian ecosystem, however, differs from the North American sys-
tem as the moose density is generally higher. Additionally, the age and
sex structures differ because of selective hunting schemes with a higher-
proportion harvesting of calves and young males. Another important dif-
ference is that in Scandinavia harvesting accounts for a greater share of
total mortality. Last but not least, wolf density in Scandinavia is also sig-
nificantly lower and more patchily distributed (Wabakken ez al. 2001). It
thus follows that the moose-wolf ratio is higher in Scandinavia and the
impact of wolf predation is likely to be of a more local nature. Wolf pre-
dation is focused on calves, yearlings and older females, with calves as the
main food source. The predation rates reported from Scandinavia also
appear to be higher than those in North America, which may indicate
that predation, for a given size of wolf pack, increases with moose density
(Nilsen ez al. 2005). '

Based on the studies cited above, it can be assumed that wolf predation
represents an additional source of mortality for calves, yearlings and older
fernales. In our biomass framework, the wolf population then negatively
affects the natural growth of the moose population. It is assumed that the
predation increases with the size and number of the wolf packs as well as
the size of the moose stock. There may also be a feedback effect as the
size of the moose population influences wolf population growth. How-
ever, in areas with colonising carnivore populations, this relationship will
appear less interactive, meaning that the wolves are not able to respond
numerically to variations in the moose population (Nilsen et al. 2005).
Any numerical response of the wolf population is hence neglected. The
ecological model of the wolf~-moose interaction is therefore described by
equation (2) dX/dt = F(X, W) — h, while equation (1) again reduces to
dW/dr = G(W) — y.

We then have the cost and benefit streams of the considered system
and we start with the wolf stock values. The livestock predation cost on
sheep and reindeer of the wolf S(W) is suspected to be quite small, but,
as indicated, it can be of significance in a few areas (Milner ez al. 2005).
Yet the non-consumptive wolf stock value (including the intrinsic value
and viewing value), R(W), is suspected to be high (Boman and Bostedt
1999). However, as the stock value is highly uncertain, the effects of
different assumptions need to be studied. It may be costly to control
the wolf population, or it may be controlled by selling hunting licences.
Another possibility is that the controlling costs more or less cover the
benefits so that the net harvesting value may be small or negligible. All
these possibilities are explored next when assuming that the harvesting
income, or cost, increases linearly in the number of controlled animals
while neglecting any stock effect.
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Landowners obtain the hunting profit of the moose. The yearly hunt-
ing income is given as V{(k, X) = ph, with p as the net hunting licence
price, assumed to be fixed and independent of the harvest and stock
size. This is justified by the fact that there is competition among a large
number of suppliers of hunting licences in Scandinavia. Following the
practice in Norway (and Sweden), one licence allows the buyer t6 kill
one animal, which is paid only if the animal is killed. The moose popula-
tion also causes browsing damage to landowners, the damage on young
pine being of particular importance (Wam ez al. 2005). The damage on
young pine occurs basically during the winter and varies with the quality
of the timber stand and the productivity of the forest. The damage may
take place immediately and damaged young pine trees may be replaced
directly, but quite frequently there is a time lag between the occurrence
of browsing and the economic loss of the damage. In such instances,
however, discounting is not taken into account explicitly. There are also
other costs connected to the moose population, the single most impor-
tant being related to moose—vehicle collisions. This cost is considerable
and recent estimates indicate that it may be even higher than the meat
value of the moose (Skonhoft 2006). Thus, the damage cost function of
the moose, D(X), covers grazing damage as well as the cost of traffic col-
lisions. There will also be a positive stock value of the moose population
(viewing value, etc.). However, because of the large number of moose in
Scandinavia, Q(X) is suspected to be quite small, if not negligible, at the
margin.

"The wolf-moose example is a mix between the second and fourth cases
introduced in the introduction. Thatis, (i) there is only a one-way ecolog-
ical interaction, (ii) there is a fixed control value of the recolonised species
(positive, negative or zero), and iii) the harvesting value of the existing
species is not stock dependent and is linear in the amount harvested.”The
shadow value of the recolonised species will be constant when assuming
that the wolf population is controlled along the optimal trajectory all the
time. It follows that H, = u which is positive, negative or zero, while the
control condition (6) of the existing species, the moose, is p = A when
harvesting pays off. The dynamics of this system will therefore obey an
MRAP path and the reduced-form steady state is given by

Ozﬂa_R,(W)‘*'S(I’V)—MG/(W)—pFW(XW) (10)

and

0=p5— Q(X)+ D(X) — pFx(X, W) an

These two equations determine X* and W* simultaneously. In a next step,
the number of animals removed can be derived from the equilibrium
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population growth conditions. The wolf population may be above or
below that of the maximum sustainable yield level, Woys and this may
also occur for the moose population. The comparative statics are also
generally unclear and a higher harvesting price of the moose may either
increase or decrease the socially desirable number of moose. For this rea-
son, the wolf stock effect will be unclear as well. The effect of a higher
discount rate is suspected to influence the wolf stock negatively, but this
effect is also unclear because it affects the population directly as well as
indirectly through the moose population equilibrium condition (11).

To shed further light on the economic and ecological forces at work,
the functional forms of the various functions need to be specified. The
wolf stock growth is assumed to be logistic, G(W) =¥ w(1-— W/ L), with
y as the maximum specific growth rate and L as its carrying capacity.
Similarly, the natural growth of the moose population in the absence of
wolf predation is assumed to be of the standard logistic type, while the
predation effect (the functional response) is specified in a Cobb-Douglas
manner, F(X, W) = X(1 — X/K) —aWX, where o > 0 is the predation
coefficient. Therefore, the functional response of the moose population
implies a fixed predation rate (as a growth rate), a W, and indicates that
the amount of predation increases linearly with the size of the moose
stock.

For simplicity, it is assumed that the moose stock values are linearly
increasing in stock size. Therefore, for the moose population, we have
D(X) =dX, withd > 0 as the constant damage COSt per moosc, includ-
ing browsing damage as well as traffic damage, and O(X) = ¢ X with
g > 0 as the fixed positive moose stock value. For the wolf population,
we also assume a linear damage function with constant damage cost per
wolf, S(W) =s Wwith s > 0. However, quite realistically, a strictly con-
cave function is imposed for the wolf intrinsic value. This may secure 2
meaningful solution of the optimisation problem even if the recolonised
species shadow value is negative (see below) and the function is speci-
fiedas R(W) =ri W~ (r2 /2) W2. The value of the parametersry > 0 and
ro > 0 are scaled such that the marginal value all the time is positive.z
Inserted into the above conditions (10) and (11) it follows that

paX+ Quy/L+r)W=uply — 8) + (r1 —5) (102)

and
@2pp/K) X+ paW= p(B—8+(@q—a). (11a)

2 Typically, the moose positive stock value O(X) is suspected to be strictly concave as well.
However, for simplicity, it is given as a linear function as this has no influence on the

qualitative structure of the solution.
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Figure 20.1. Wolf-moose economic equilibrium

These equations are straight lines in the X, W plane. The moose equilib-
rium condition (11a) slopes unambiguously downwards while the wolf
equilibrium condition (10a) may slope downwards as well as upwards
depending on the sign and size of the shadow value. However, due to the
second-order conditions for a maximum, it must slope downwards but
be less negatively sloped than the moose equilibrium condition (Figure
20.1). 'Two parameters are of particular importance here: the ecological
interaction coefficient, «, in addition to the shadow value . Hence, to
obtain a meaningful solution of the maximum problem, the predation
pressure cannot be too strong while the shadow price, if negative, cannot
be too largely negative.?

Table 20.2 reports the comparative static results. The effects of shifts
in the stock values are straightforward. If, say, the positive wolf stock

3 The Hamiltonian must be jointly concave in the control and state variables to fulfil the
second-order conditions for maximum. It can be demonstrated that this requires =
@pB/K)2uy /L +r2) — (pa)? > 0 together with —(Quy/L+1r2) < 0. Q is the determi-
nant of the left-hand side of equations (10a) and (11a), and 2 > 0 indicates that equation
(11a) should be more negatively sloped than equation (10a). There must also be vari-
ous restrictions on the parameter values to obtain an interior solution with positive stock
sizes and stock sizes below its carrying capacities. The moose equilibrium condition (1 1a)
must hence intersect at the W axis above that of the wolf equilibrium condition (10a)

while (10a) must intersect with the X axis outside that of equation (11a). For a related
discussion, see Skonhoft (1995).
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Table 20.2 Whlf recolonisation example —
comparative staric results

71 d P " 8 o
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value, r;, increases permanently, the social planner will keep a larger
wolf population. As a result, the predation pressure will increase and
the number of moose will be reduced accordingly. If the moose damage
cost, d, increases due to, for instance, a higher frequency of moose-
vehicle collisions, it will also be beneficial given a higher wolf population
to increase the predation pressure and reduce the number of moose and
hence the damage. Interestingly, the effects of a permanently higher rate
of discount are generally unclear. However, if the wolf shadow price is
positive, it can be shown that at least one of the stocks will decrease if 8
increases. The effects of a more valuable moose harvest are ambiguous
as well. On the one hand, a higher p will increase the moose number
for a given size of the recolonised wolf population. This is because the
marginal damage dominates the marginal positive stock value. Therefore,
the relative damage cost will be reduced. This effect will be reinforced
as the cost of predation increases and the wolf equilibrium line (10a)
shifts inwards. On the other hand, if the marginal moose damage is small
and negligible and is dominated by the positive stock value, no clear
conclusion can be drawn. In either case, the effect on the wolf number
will be the opposite.

The effects of a shift in the wolf shadow value are also ambiguous. If
the shadow value is positive and increases, the result will be a smaller
wolf population, suggesting that the net marginal stock value (r; —s) is
positive. The predation pressure hence reduces and the moose popula-
tion increases accordingly. But if ¢ < 0 and the control cost increases
further, it will be beneficial with a higher wolf population, again under
the reasonable assumption that the positive marginal stock value dom-
inates the negative one. If the shadow price is zero, (10a) simply reads
W= (r —s)/ra— (pa/r2) X The effects of a higher predation pressure
through « are also generally unclear. However, it can be shown that at
least one of the stocks will decrease.

It is difficult (if not meaningless; ‘what is the money value of a
songbird?’) to try to calculate the stock value of the recolonised species
monetarily as it comprises, among others, its existence value. It is,
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however, possible to reveal this value indirectly by imposing a quantitative
restriction on the number of reintroduced wolves. To make things simple,
while capturing the main points, any net harvesting benefit is neglected
so the shadow value is zero, = 0. In addition, the wolf damage cost
together with the moose existence value are assumed to be small and negli-
gibleaswell,i.e.s = 0 and g = 0. It thus follows that conditions (10a) and
(11a) reduce to pa X + ry W = rrand 2pB/K) X+ pa W = p(B—98)—d,
respectively. Therefore, for a wolf target level I, the marginal stock value
reads as follows:

K K ;
n=gp -8 -d+ 32 [3% - <pa>2] o a2

The calculation is illustrated by using data from the Koppang area, some
300 km north of Oslo. A wolf pack settled in this region in 1997 in an area
of 600 km?, with a moose population of about 1000 individuals. Since
then the number of wolves has been between five and twelve (more details
are provided in Skonhoft 2006). A target level of ten wolves illustrates
the calculations, W = 10. The following parameter values are used. The
moose carrying capacity is K = 3, 500 (number of moose) which implies
“about 5.8 moose per square km. The moose maximum specific growth
rate is 8 = 0.47, while the predation coefficient is assumed to be ¢ =
0.005 (1/wolf). The hunting licence price is 2 =8 (1000 NOK/moose,
2003 prices), the marginal damage costisd = 1 (1000 NOK/moose, 2003
prices) and the discount rent is § — 0.05. Finally, the baseline changing
marginal wolf stock value is assumed to be r, = 10 (1000 NOK/wolf?).
For these parameter values, we find r; = 137 (1000 NOK/wolf),
indicating the value R=r, W— (r,/2) 12 = 865 (1000 NOK) and the
marginal value R =r; — W =37, Consequently, on these premises,
the stock value of the target level wolf pack of 7= 10 must be at least
865 if recolonisation should be beneficial from a social point of view. Not
surprisingly, , and hence R decrease if the damage cost of the moose
population increases, while r; increases when the moose hunting becomes
more valuable. If, say, the hunting value p is doubled, we find r, =192,
while doubling the marginal damage d yields r; = 118.4
Alrogether, these calculations indicate that, depending on cost and
price assumptions, the break-even wolf stock value may vary widely. Nev-
ertheless, the calculations demonstrate a quite modest wolf value to jus-
tify recolonisation. If the moose browsing and traffic damage increase,
the critical marginal recolonisation value decreases as the predation then

4 Ifinstead supposing that the marginal stock valye reduces more slowly with ry = 5, while
the other parameters are left unchanged, we find r; = 86 and R — 615. With r, = 20,
meanwhile, the result is r; = 236 and R — 1365.
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pays off more in the sense that it contributes to less moose damage cost.
The wolf is then ‘doing the job’ as a damage controller. In the opposite
case of a more valuable prey harvest, the predation cost increases pro-
portionally and a higher break-even recolonisation value occurs. These
values may be compared to the Scandinavian contingent value study of
Boman and Bostedt (1999), which indicates (but notice the abovemen-
tioned problems with such assessments) a much higher willingness to pay
for the wolf existence value.

5 Conclusion

Species recolonisation typically takes place in an environment where ear-
lier harvesting practices are banned, or when previous production prac-
tices in agriculture and forestry influencing habitat conversion and species
growth are changed. Therefore, recolonisation often represents an insti-
tutional change and reflects society’s changing attitude to the species
cost and benefit streams. When successful, recolonisation often influences
existing ecology and may come into conflict with existing economic activ-
ities. However, it may also create hunting and trapping value in addition
to non-consumptive values like existence and viewing value. Ecology and
institutions shape these costs and benefit streams experienced by different
agents and groups of people.

Correctly modelling the key interspecies relationship is the critical part
of studying the economic effects of recolonised species and various sit-
uations have been considered in this chapter. Using a general model in
which recolonised species interact with already existing species, like a
traditional predator—prey interaction, it becomes apparent that it is diffi-
cult to explain the dynamics and also the economic and ecological forces
forming the equilibrium that eventually settles. Therefore, in order to
shed additional light, at the cost of generality, some simplified cases have
been proposed. Not surprisingly, loosening up the interaction between
reintroduced and existing species yields more traceable situations to anal-
yse. However, even in such cases, the economic and ecological forces at
work are often difficult to assess.

The general insight from these models is that some control of the
recolonised species often pays off. However, recolonised species should
be kept uncontrolled when they (i) do small damage, (ii) are expensive
to control and (iii) prey upon existing species that cause various types of
damage, like browsing or grazing damage. A calibrated example of the
recent experience of the recolonisation of the grey wolf in Scandinavia
sheds further light on the various ecological and economic mechanisms
working. This example demonstrates that the wolf value may be quite




576 Biodiversity Economics

modest to justify the wolf recolonisation. This example also demonstrates
that the effects of economic forces often are difficult o predict when oper-
ating in an interspecies relationship. This indicates that detailed knowl-
edge about the ecology and cost and benefit structure is crucial to carry
out a sound recolonised species management policy.
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